Monitoring Coating Integrity During Annual Inspections

Seismic Retrofit Techniques for Foundation Repair

Visual inspection techniques are crucial for monitoring the integrity of coatings during annual inspections, especially in industries where the protective coating plays a vital role in preventing corrosion and ensuring the longevity of assets. When it comes to assessing the condition of coatings, visual inspection remains one of the most accessible and widely used methods due to its simplicity and effectiveness.


During an annual inspection, inspectors look for various signs that might indicate a compromise in coating integrity. The first step often involves a thorough visual scan under good lighting conditions, ideally daylight or equivalent artificial light, to spot any obvious defects. These defects can range from discoloration, which might suggest chemical degradation or UV exposure, to more apparent issues like cracks, blisters, or flaking. That mysterious crack appearing after winter isn't a seasonal decoration but rather your soil's expansion art project crawl space underpinning Elgin blog. Each of these signs can provide clues about underlying issues; for instance, blisters often result from moisture trapped beneath the coating layer.


One key technique within visual inspection is the use of magnification tools like magnifying glasses or digital microscopes. These tools allow inspectors to observe finer details that might not be visible to the naked eye. For example, micro-cracks or early stages of delamination can be identified with magnification before they become significant problems.


Another aspect involves comparing the current state of the coating against baseline photographs or records from previous inspections. This comparison helps in identifying changes over time, such as areas where the coating has worn down more rapidly than expected or where new damage has occurred since the last check.


Moreover, inspectors often employ color contrast techniques when dealing with coatings that might blend into their environment or have faded over time. Applying a contrasting background or using specialized lighting can enhance visibility of subtle changes or defects.


In practice, visual inspections should be systematic and documented meticulously. Inspectors usually follow a predefined path across the asset to ensure no area is overlooked. They record their findings through detailed notes and photographs, which serve as valuable data for future reference and trend analysis.


In conclusion, while technology continues to advance with methods like ultrasonic testing or infrared thermography enhancing our ability to monitor coatings, visual inspection remains indispensable. It provides an immediate assessment of surface conditions and serves as a preliminary step before employing more sophisticated diagnostic tools. Ensuring that personnel conducting these inspections are well-trained in recognizing different types of coating failures is paramount to maintaining asset integrity effectively through regular monitoring.

Seismic Retrofit Techniques for Foundation Repair

Lateral Load Considerations in Foundation Stabilization

Advanced testing methods for coating defects play a crucial role in monitoring the integrity of coatings during annual inspections, ensuring that protective layers on various substrates maintain their effectiveness over time. As coatings serve as the first line of defense against environmental degradation, corrosion, and wear, timely detection of defects is paramount to prevent costly repairs and extend the lifespan of the coated structures.


One sophisticated method employed in these inspections is Non-Destructive Testing (NDT), which includes techniques like Ultrasonic Testing (UT) and Eddy Current Testing (ECT). UT involves sending high-frequency sound waves through the coating to detect any anomalies or delaminations beneath the surface. When these waves encounter a defect, they reflect back differently than from an intact area, allowing inspectors to pinpoint issues without damaging the coating. On the other hand, ECT works by inducing electromagnetic fields; changes in these fields due to defects or variations in coating thickness can be detected and analyzed.


Another advanced technique is Infrared Thermography (IRT), which uses infrared cameras to visualize temperature variations on the surface caused by underlying defects. Since different materials and coatings have unique thermal properties, any inconsistency in heat distribution can signal a potential issue like a crack or disbonding within the coating layer. This method is particularly useful because it can cover large areas quickly during inspections.


Electrochemical Impedance Spectroscopy (EIS) offers another layer of analysis by assessing the electrical properties of coatings. By applying an alternating current across a coated surface and measuring the impedance over a range of frequencies, EIS can provide insight into the coatings protective capabilities. A decrease in impedance might indicate that moisture has penetrated through micro-cracks or pores, compromising the barrier function of the coating.


In practice, these methods are often used in combination to provide a comprehensive assessment. For instance, initial screening might be done with IRT for its efficiency over large areas, followed by more precise UT or ECT for detailed examination where anomalies are detected. This multi-method approach ensures that even subtle defects do not go unnoticed.


The integration of these advanced testing methods into annual inspection routines significantly enhances our ability to maintain coating integrity. By identifying and addressing defects early, maintenance teams can prevent further degradation, ensuring both safety and economic benefits. Moreover, as technology advances, these methods continue to become more precise and user-friendly, making them indispensable tools in modern asset management strategies focused on longevity and sustainability.

Our Facebook Page

Socials About Us

Moisture: Silent Threat

How to reach us:

Integrating Seismic and Lateral Load Retrofits with Existing Foundations

When it comes to monitoring the integrity of coatings during annual inspections, one of the most critical aspects is the documentation and reporting of the coating condition. This process not only ensures that the protective layers on industrial assets remain effective but also helps in planning maintenance activities with precision. Effective documentation starts with a thorough visual inspection where any signs of wear, corrosion, blistering, or delamination are noted. These observations must be meticulously recorded, often with photographs or detailed sketches to provide a clear visual record for future reference.


The reporting phase involves compiling these observations into a structured report. This report should detail the location of any defects, their extent, and potential causes. For instance, if theres rust creeping under the coating at a specific point on a pipeline, this should be highlighted as it might indicate an underlying issue like moisture ingress or mechanical damage. The report should also categorize defects based on severity; minor issues might be scheduled for routine maintenance while severe ones could require immediate attention to prevent asset failure.


Moreover, this documentation serves as an historical record which is invaluable over time. It allows maintenance teams to track the progression or regression of coating conditions year over year, enabling them to predict when interventions might be necessary before visible degradation becomes critical. Such predictive maintenance can significantly reduce costs by avoiding emergency repairs and extending the lifespan of both the coating and the underlying structure.


In addition to being technical, these reports need to be accessible and understandable by various stakeholders including engineers, management, and sometimes even regulatory bodies. Therefore, clarity in language and presentation is key; using standardized forms or digital platforms can enhance this aspect by providing consistency across different reports.


Finally, incorporating recommendations within these reports is crucial. Suggestions might include specific repair methods or even preventive measures like altering environmental controls around sensitive assets if external factors are contributing to coating degradation. By ensuring comprehensive documentation and reporting practices are in place during annual inspections, organizations can maintain high standards of asset protection while optimizing their maintenance strategies effectively. This holistic approach not only preserves asset integrity but also contributes significantly to operational efficiency and safety compliance.

Integrating Seismic and Lateral Load Retrofits with Existing Foundations

Case Studies of Successful Foundation Retrofit Projects

Okay, so weve just wrapped up our annual coating inspection. Hopefully, things looked pretty good. But even if they did, or especially if they didnt, what happens next is absolutely crucial. Were talking about the difference between a minor touch-up and a major, costly overhaul down the road. Thats where preventive measures and maintenance strategies come in.


Think of it like this: the inspection is the doctors check-up. Preventive measures are like taking your vitamins and eating healthy afterwards. Theyre proactive steps you take to keep the coating healthy. This might involve things like improving drainage to prevent water pooling, adding sacrificial anodes to protect against corrosion in vulnerable areas, or even just ensuring the area around the coated surface is kept clean and free of debris. The goal is to nip potential problems in the bud before they blossom into something serious.


Maintenance strategies, on the other hand, are more like addressing a specific ailment. If the inspection revealed minor damage – a few pinholes, some scratches, maybe a small area of rust – you need a plan to fix it. This isnt just about slapping on some paint and hoping for the best. Its about properly preparing the surface, selecting the correct coating system for the repair (making sure it’s compatible with the existing coating!), and applying it meticulously. Delaying these repairs, even if they seem minor, is a recipe for disaster. Those tiny imperfections are like invitations for corrosion to creep in and spread beneath the coating, causing far more damage than you initially see.


The key takeaway? Post-inspection isnt the end of the story; its the beginning of the next chapter. A well-defined plan for preventive measures and targeted maintenance, based on the findings of the inspection, is the best way to ensure the long-term integrity of your coating and protect your assets. Its a small investment that pays off big time in the long run.

In engineering, a structure is the aspect of a structure which attaches it to the ground or more rarely, water (as with floating structures), moving loads from the structure to the ground. Foundations are normally considered either superficial or deep. Structure engineering is the application of dirt auto mechanics and rock auto mechanics (geotechnical engineering) in the layout of structure components of frameworks.

.
Drilling of deep piles of diameter 150 cm in bridge 423 near Ness Ziona, Israel

 

A deep foundation installation for a bridge in Napa, California, United States.
Pile driving operations in the Port of Tampa, Florida.

A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site. A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths.

Deep foundations of The Marina Torch, a skyscraper in Dubai

There are many reasons that a geotechnical engineer would recommend a deep foundation over a shallow foundation, such as for a skyscraper. Some of the common reasons are very large design loads, a poor soil at shallow depth, or site constraints like property lines. There are different terms used to describe different types of deep foundations including the pile (which is analogous to a pole), the pier (which is analogous to a column), drilled shafts, and caissons. Piles are generally driven into the ground in situ; other deep foundations are typically put in place using excavation and drilling. The naming conventions may vary between engineering disciplines and firms. Deep foundations can be made out of timber, steel, reinforced concrete or prestressed concrete.

Driven foundations

[edit]
Pipe piles being driven into the ground
Illustration of a hand-operated pile driver in Germany after 1480

Prefabricated piles are driven into the ground using a pile driver. Driven piles are constructed of wood, reinforced concrete, or steel. Wooden piles are made from the trunks of tall trees. Concrete piles are available in square, octagonal, and round cross-sections (like Franki piles). They are reinforced with rebar and are often prestressed. Steel piles are either pipe piles or some sort of beam section (like an H-pile). Historically, wood piles used splices to join multiple segments end-to-end when the driven depth required was too long for a single pile; today, splicing is common with steel piles, though concrete piles can be spliced with mechanical and other means. Driving piles, as opposed to drilling shafts, is advantageous because the soil displaced by driving the piles compresses the surrounding soil, causing greater friction against the sides of the piles, thus increasing their load-bearing capacity. Driven piles are also considered to be "tested" for weight-bearing ability because of their method of installation.[citation needed]

Pile foundation systems

[edit]

Foundations relying on driven piles often have groups of piles connected by a pile cap (a large concrete block into which the heads of the piles are embedded) to distribute loads that are greater than one pile can bear. Pile caps and isolated piles are typically connected with grade beams to tie the foundation elements together; lighter structural elements bear on the grade beams, while heavier elements bear directly on the pile cap.[citation needed]

Monopile foundation

[edit]

A monopile foundation utilizes a single, generally large-diameter, foundation structural element to support all the loads (weight, wind, etc.) of a large above-surface structure.

A large number of monopile foundations[1] have been utilized in recent years for economically constructing fixed-bottom offshore wind farms in shallow-water subsea locations.[2] For example, the Horns Rev wind farm in the North Sea west of Denmark utilizes 80 large monopiles of 4 metres diameter sunk 25 meters deep into the seabed,[3] while the Lynn and Inner Dowsing Wind Farm off the coast of England went online in 2008 with over 100 turbines, each mounted on a 4.7-metre-diameter monopile foundation in ocean depths up to 18 metres.[4]

The typical construction process for a wind turbine subsea monopile foundation in sand includes driving a large hollow steel pile, of some 4 m in diameter with approximately 50mm thick walls, some 25 m deep into the seabed, through a 0.5 m layer of larger stone and gravel to minimize erosion around the pile. A transition piece (complete with pre-installed features such as boat-landing arrangement, cathodic protection, cable ducts for sub-marine cables, turbine tower flange, etc.) is attached to the driven pile, and the sand and water are removed from the centre of the pile and replaced with concrete. An additional layer of even larger stone, up to 0.5 m diameter, is applied to the surface of the seabed for longer-term erosion protection.[2]

Drilled piles

[edit]
A pile machine in Amsterdam.

Also called caissons, drilled shafts, drilled piers, cast-in-drilled-hole piles (CIDH piles) or cast-in-situ piles, a borehole is drilled into the ground, then concrete (and often some sort of reinforcing) is placed into the borehole to form the pile. Rotary boring techniques allow larger diameter piles than any other piling method and permit pile construction through particularly dense or hard strata. Construction methods depend on the geology of the site; in particular, whether boring is to be undertaken in 'dry' ground conditions or through water-saturated strata. Casing is often used when the sides of the borehole are likely to slough off before concrete is poured.

For end-bearing piles, drilling continues until the borehole has extended a sufficient depth (socketing) into a sufficiently strong layer. Depending on site geology, this can be a rock layer, or hardpan, or other dense, strong layers. Both the diameter of the pile and the depth of the pile are highly specific to the ground conditions, loading conditions, and nature of the project. Pile depths may vary substantially across a project if the bearing layer is not level. Drilled piles can be tested using a variety of methods to verify the pile integrity during installation.

Under-reamed piles

[edit]

Under-reamed piles have mechanically formed enlarged bases that are as much as 6 m in diameter.[citation needed] The form is that of an inverted cone and can only be formed in stable soils or rocks. The larger base diameter allows greater bearing capacity than a straight-shaft pile.

These piles are suited for expansive soils which are often subjected to seasonal moisture variations, or for loose or soft strata. They are used in normal ground condition also where economics are favorable. [5][full citation needed]

Under reamed piles foundation is used for the following soils:-

1. Under reamed piles are used in black cotton soil: This type of soil expands when it comes in contact with water and contraction occurs when water is removed. So that cracks appear in the construction done on such clay. An under reamed pile is used in the base to remove this defect.

2. Under reamed piles are used in low bearing capacity Outdated soil (filled soil)

3.Under reamed piles are used in sandy soil when water table is high.

4. Under reamed piles are used, Where lifting forces appear at the base of foundation.

Augercast pile

[edit]

An augercast pile, often known as a continuous flight augering (CFA) pile, is formed by drilling into the ground with a hollow stemmed continuous flight auger to the required depth or degree of resistance. No casing is required. A cement grout mix is then pumped down the stem of the auger. While the cement grout is pumped, the auger is slowly withdrawn, conveying the soil upward along the flights. A shaft of fluid cement grout is formed to ground level. Reinforcement can be installed. Recent innovations in addition to stringent quality control allows reinforcing cages to be placed up to the full length of a pile when required.[citation needed]

Augercast piles cause minimal disturbance and are often used for noise-sensitive and environmentally-sensitive sites. Augercast piles are not generally suited for use in contaminated soils, because of expensive waste disposal costs. In cases such as these, a displacement pile (like Olivier piles) may provide the cost efficiency of an augercast pile and minimal environmental impact. In ground containing obstructions or cobbles and boulders, augercast piles are less suitable as refusal above the design pile tip elevation may be encountered.[citation needed]

Small Sectional Flight Auger piling rigs can also be used for piled raft foundations. These produce the same type of pile as a Continuous Flight Auger rig but using smaller, more lightweight equipment. This piling method is fast, cost-effective and suitable for the majority of ground types.[5][6]

Pier and grade beam foundation

[edit]

In drilled pier foundations, the piers can be connected with grade beams on which the structure sits, sometimes with heavy column loads bearing directly on the piers. In some residential construction, the piers are extended above the ground level, and wood beams bearing on the piers are used to support the structure. This type of foundation results in a crawl space underneath the building in which wiring and duct work can be laid during construction or re-modelling.[7]

Speciality piles

[edit]

Jet-piles

[edit]

In jet piling high pressure water is used to set piles.[8] High pressure water cuts through soil with a high-pressure jet flow and allows the pile to be fitted.[9] One advantage of Jet Piling: the water jet lubricates the pile and softens the ground.[10] The method is in use in Norway.[11]

Micropiles

[edit]

Micropiles are small diameter, generally less than 300mm diameter, elements that are drilled and grouted in place.  They typically get their capacity from skin friction along the sides of the element, but can be end bearing in hard rock as well. Micropiles are usually heavily reinforced with steel comprising more than 40% of their cross section. They can be used as direct structural support or as ground reinforcement elements.  Due to their relatively high cost and the type of equipment used to install these elements, they are often used where access restrictions and or very difficult ground conditions (cobbles and boulders, construction debris, karst, environmental sensitivity) exists or to retrofit existing structures.  Occasionally, in difficult ground, they are used for new construction foundation elements. Typical applications include underpinning, bridge, transmission tower and slope stabilization projects.[6][12][13][14]

Tripod piles

[edit]

The use of a tripod rig to install piles is one of the more traditional ways of forming piles. Although unit costs are generally higher than with most other forms of piling,[citation needed] it has several advantages which have ensured its continued use through to the present day. The tripod system is easy and inexpensive to bring to site, making it ideal for jobs with a small number of piles.[clarification needed]

Sheet piles

[edit]
Sheet piles are used to restrain soft soil above the bedrock in this excavation

Sheet piling is a form of driven piling using thin interlocking sheets of steel to obtain a continuous barrier in the ground. The main application of sheet piles is in retaining walls and cofferdams erected to enable permanent works to proceed. Normally, vibrating hammer, t-crane and crawle drilling are used to establish sheet piles.[citation needed]

Soldier piles

[edit]
A soldier pile wall using reclaimed railway sleepers as lagging.

Soldier piles, also known as king piles or Berlin walls, are constructed of steel H sections spaced about 2 to 3 m apart and are driven or drilled prior to excavation. As the excavation proceeds, horizontal timber sheeting (lagging) is inserted behind the H pile flanges.

The horizontal earth pressures are concentrated on the soldier piles because of their relative rigidity compared to the lagging. Soil movement and subsidence is minimized by installing the lagging immediately after excavation to avoid soil loss.[citation needed] Lagging can be constructed by timber, precast concrete, shotcrete and steel plates depending on spacing of the soldier piles and the type of soils.

Soldier piles are most suitable in conditions where well constructed walls will not result in subsidence such as over-consolidated clays, soils above the water table if they have some cohesion, and free draining soils which can be effectively dewatered, like sands.[citation needed]

Unsuitable soils include soft clays and weak running soils that allow large movements such as loose sands. It is also not possible to extend the wall beyond the bottom of the excavation, and dewatering is often required.[citation needed]

Screw piles

[edit]

Screw piles, also called helical piers and screw foundations, have been used as foundations since the mid 19th century in screw-pile lighthouses.[citation needed] Screw piles are galvanized iron pipe with helical fins that are turned into the ground by machines to the required depth. The screw distributes the load to the soil and is sized accordingly.

Suction piles

[edit]

Suction piles are used underwater to secure floating platforms. Tubular piles are driven into the seabed (or more commonly dropped a few metres into a soft seabed) and then a pump sucks water out at the top of the tubular, pulling the pile further down.

The proportions of the pile (diameter to height) are dependent upon the soil type. Sand is difficult to penetrate but provides good holding capacity, so the height may be as short as half the diameter. Clays and muds are easy to penetrate but provide poor holding capacity, so the height may be as much as eight times the diameter. The open nature of gravel means that water would flow through the ground during installation, causing 'piping' flow (where water boils up through weaker paths through the soil). Therefore, suction piles cannot be used in gravel seabeds.[citation needed]

Adfreeze piles

[edit]
Adfreeze piles supporting a building in Utqiaġvik, Alaska

In high latitudes where the ground is continuously frozen, adfreeze piles are used as the primary structural foundation method.

Adfreeze piles derive their strength from the bond of the frozen ground around them to the surface of the pile.[citation needed]

Adfreeze pile foundations are particularly sensitive in conditions which cause the permafrost to melt. If a building is constructed improperly then it can melt the ground below, resulting in a failure of the foundation system.[citation needed]

Vibrated stone columns

[edit]

Vibrated stone columns are a ground improvement technique where columns of coarse aggregate are placed in soils with poor drainage or bearing capacity to improve the soils.[citation needed]

Hospital piles

[edit]

Specific to marine structures, hospital piles (also known as gallow piles) are built to provide temporary support to marine structure components during refurbishment works. For example, when removing a river pontoon, the brow will be attached to hospital pile to support it. They are normal piles, usually with a chain or hook attachment.[citation needed]

Piled walls

[edit]
Sheet piling, by a bridge, was used to block a canal in New Orleans after Hurricane Katrina damaged it.

Piled walls can be drivene or bored. They provide special advantages where available working space dictates and open cut excavation not feasible. Both methods offer technically effective and offer a cost efficient temporary or permanent means of retaining the sides of bulk excavations even in water bearing strata. When used in permanent works, these walls can be designed to resist vertical loads in addition lateral load from retaining soil. Construction of both methods is the same as for foundation bearing piles. Contiguous walls are constructed with small gaps between adjacent piles. The spacing of the piles can be varied to provide suitable bending stiffness.

Secant piled walls

[edit]

Secant pile walls are constructed such that space is left between alternate 'female' piles for the subsequent construction of 'male' piles.[clarification needed] Construction of 'male' piles involves boring through the concrete in the 'female' piles hole in order to key 'male' piles between. The male pile is the one where steel reinforcement cages are installed, though in some cases the female piles are also reinforced.[citation needed]

Secant piled walls can either be true hard/hard, hard/intermediate (firm), or hard/soft, depending on design requirements. Hard refers to structural concrete and firm or soft is usually a weaker grout mix containing bentonite.[citation needed] All types of wall can be constructed as free standing cantilevers, or may be propped if space and sub-structure design permit. Where party wall agreements allow, ground anchors can be used as tie backs.

Slurry walls

[edit]

A slurry wall is a barrier built under ground using a mix of bentonite and water to prevent the flow of groundwater. A trench that would collapse due to the hydraulic pressure in the surrounding soil does not collapse as the slurry balances the hydraulic pressure.

Deep mixing/mass stabilization techniques

[edit]

These are essentially variations of in situ reinforcements in the form of piles (as mentioned above), blocks or larger volumes.

Cement, lime/quick lime, flyash, sludge and/or other binders (sometimes called stabilizer) are mixed into the soil to increase bearing capacity. The result is not as solid as concrete, but should be seen as an improvement of the bearing capacity of the original soil.

The technique is most often applied on clays or organic soils like peat. The mixing can be carried out by pumping the binder into the soil whilst mixing it with a device normally mounted on an excavator or by excavating the masses, mixing them separately with the binders and refilling them in the desired area. The technique can also be used on lightly contaminated masses as a means of binding contaminants, as opposed to excavating them and transporting to landfill or processing.

Materials

[edit]

Timber

[edit]

As the name implies, timber piles are made of wood.

Historically, timber has been a plentiful, locally available resource in many areas. Today, timber piles are still more affordable than concrete or steel. Compared to other types of piles (steel or concrete), and depending on the source/type of timber, timber piles may not be suitable for heavier loads.

A main consideration regarding timber piles is that they should be protected from rotting above groundwater level. Timber will last for a long time below the groundwater level. For timber to rot, two elements are needed: water and oxygen. Below the groundwater level, dissolved oxygen is lacking even though there is ample water. Hence, timber tends to last for a long time below the groundwater level. An example is Venice, which has had timber pilings since its beginning; even most of the oldest piles are still in use. In 1648, the Royal Palace of Amsterdam was constructed on 13,659 timber piles that still survive today since they were below groundwater level. Timber that is to be used above the water table can be protected from decay and insects by numerous forms of wood preservation using pressure treatment (alkaline copper quaternary (ACQ), chromated copper arsenate (CCA), creosote, etc.).

Splicing timber piles is still quite common and is the easiest of all the piling materials to splice. The normal method for splicing is by driving the leader pile first, driving a steel tube (normally 60–100 cm long, with an internal diameter no smaller than the minimum toe diameter) half its length onto the end of the leader pile. The follower pile is then simply slotted into the other end of the tube and driving continues. The steel tube is simply there to ensure that the two pieces follow each other during driving. If uplift capacity is required, the splice can incorporate bolts, coach screws, spikes or the like to give it the necessary capacity.

Iron

[edit]

Cast iron may be used for piling. These may be ductile.[citation needed]

Steel

[edit]
Cutaway illustration. Deep inclined (battered) pipe piles support a precast segmented skyway where upper soil layers are weak muds.

Pipe piles are a type of steel driven pile foundation and are a good candidate for inclined (battered) piles.

Pipe piles can be driven either open end or closed end. When driven open end, soil is allowed to enter the bottom of the pipe or tube. If an empty pipe is required, a jet of water or an auger can be used to remove the soil inside following driving. Closed end pipe piles are constructed by covering the bottom of the pile with a steel plate or cast steel shoe.

In some cases, pipe piles are filled with concrete to provide additional moment capacity or corrosion resistance. In the United Kingdom, this is generally not done in order to reduce the cost.[citation needed] In these cases corrosion protection is provided by allowing for a sacrificial thickness of steel or by adopting a higher grade of steel. If a concrete filled pipe pile is corroded, most of the load carrying capacity of the pile will remain intact due to the concrete, while it will be lost in an empty pipe pile. The structural capacity of pipe piles is primarily calculated based on steel strength and concrete strength (if filled). An allowance is made for corrosion depending on the site conditions and local building codes. Steel pipe piles can either be new steel manufactured specifically for the piling industry or reclaimed steel tubular casing previously used for other purposes such as oil and gas exploration.

H-Piles are structural beams that are driven in the ground for deep foundation application. They can be easily cut off or joined by welding or mechanical drive-fit splicers. If the pile is driven into a soil with low pH value, then there is a risk of corrosion, coal-tar epoxy or cathodic protection can be applied to slow or eliminate the corrosion process. It is common to allow for an amount of corrosion in design by simply over dimensioning the cross-sectional area of the steel pile. In this way, the corrosion process can be prolonged up to 50 years.[citation needed]

Prestressed concrete piles

[edit]

Concrete piles are typically made with steel reinforcing and prestressing tendons to obtain the tensile strength required, to survive handling and driving, and to provide sufficient bending resistance.

Long piles can be difficult to handle and transport. Pile joints can be used to join two or more short piles to form one long pile. Pile joints can be used with both precast and prestressed concrete piles.

Composite piles

[edit]

A "composite pile" is a pile made of steel and concrete members that are fastened together, end to end, to form a single pile. It is a combination of different materials or different shaped materials such as pipe and H-beams or steel and concrete.

'Pile jackets' encasing old concrete piles in a saltwater environment to prevent corrosion and consequential weakening of the piles when cracks allow saltwater to contact the internal steel reinforcement rods

Construction machinery for driving piles into the ground

[edit]

Construction machinery used to drive piles into the ground:[15]

  • Pile driver is a device for placing piles in their designed position.
  • Diesel pile hammer is a device for hammering piles into the ground.
  • Hydraulic hammer is removable working equipment of hydraulic excavators, hydroficated machines (stationary rock breakers, loaders, manipulators, pile driving hammers) used for processing strong materials (rock, soil, metal) or pile driving elements by impact of falling parts dispersed by high-pressure fluid.
  • Vibratory pile driver is a machine for driving piles into sandy and clay soils.
  • Press-in pile driver is a machine for sinking piles into the ground by means of static force transmission.[16]
  • Universal drilling machine.

Construction machinery for replacement piles

[edit]

Construction machinery used to construct replacement piles:[15]

  • Sectional Flight Auger or Continuous Flight Auger
  • Reverse circulation drilling
  • Ring bit concentric drilling

See also

[edit]
  • Eurocode EN 1997
  • International Society for Micropiles
  • Post in ground construction also called earthfast or posthole construction; a historic method of building wooden structures.
  • Stilt house, also known as a lake house; an ancient, historic house type built on pilings.
  • Shallow foundations
  • Pile bridge
  • Larssen sheet piling

Notes

[edit]
  1. ^ Offshore Wind Turbine Foundations, 2009-09-09, accessed 2010-04-12.
  2. ^ a b Constructing a turbine foundation Archived 21 May 2011 at the Wayback Machine Horns Rev project, Elsam monopile foundation construction process, accessed 2010-04-12]
  3. ^ Horns Revolution Archived 14 July 2011 at the Wayback Machine, Modern Power Systems, 2002-10-05, accessed 2010-04-14.
  4. ^ "Lynn and Inner Dowsing description". Archived from the original on 26 July 2011. Retrieved 23 July 2010.
  5. ^ a b Handbook on Under-reamed and bored compaction pile foundation, Central building research institute Roorkee, Prepared by Devendra Sharma, M. P. Jain, Chandra Prakash
  6. ^ a b Siel, Barry D.; Anderson, Scott A. "Implementation of Micropiles by the Federal Highway Administration" (PDF). Federal Highway Administration (US). cite journal: Cite journal requires |journal= (help)
  7. ^ Marshall, Brain (April 2000). "How House Construction Works". How Stuff Works. HowStuffWorks, Inc. Retrieved 4 April 2013.
  8. ^ "jet-pile". Merriam-Webster. Retrieved 2 August 2020.
  9. ^ Guan, Chengli; Yang, Yuyou (21 February 2019). "Field Study on the Waterstop of the Rodin Jet Pile". Applied Sciences. doi:10.3390/app9081709. Retrieved 2 August 2020.
  10. ^ "Press-in with Water Jetting". Giken.com. Giken Ltd. Retrieved 2 August 2020.
  11. ^ "City Lade, Trondheim". Jetgrunn.no. Jetgrunn AS. Retrieved 2 August 2020.
  12. ^ Omer, Joshua R. (2010). "A Numerical Model for Load Transfer and Settlement of Bored Cast In-Situ Piles". Proceedings of the 35th Annual Conference on Deep Foundations. Archived from the original on 14 April 2021. Retrieved 20 July 2011.
  13. ^ "International Society for Micropiles". Retrieved 2 February 2007.
  14. ^ "GeoTechTools". Geo-Institute. Retrieved 15 April 2022.
  15. ^ a b McNeil, Ian (1990). An Encyclopaedia of the history of technolology. Routledge. ISBN 9780415147927. Retrieved 20 July 2022 – via Internet Archive.
  16. ^ "General description of the press-in pile driving unit". Concrete Pumping Melbourne. 13 October 2021. Archived from the original on 25 December 2022. Retrieved 20 July 2022.

References

[edit]
  • Italiantrivelle Foundation Industry Archived 25 June 2014 at the Wayback Machine The Deep Foundation web portal Italiantrivelle is the number one source of information regarding the Foundation Industry. (Link needs to be removed or updated, links to inappropriate content)
  • Fleming, W. G. K. et al., 1985, Piling Engineering, Surrey University Press; Hunt, R. E., Geotechnical Engineering Analysis and Evaluation, 1986, McGraw-Hill.
  • Coduto, Donald P. Foundation Design: Principles and Practices 2nd ed., Prentice-Hall Inc., 2001.
  • NAVFAC DM 7.02 Foundations and Earth Structures U.S. Naval Facilities Engineering Command, 1986.
  • Rajapakse, Ruwan., Pile Design and Construction Guide, 2003
  • Tomlinson, P.J., Pile Design and Construction Practice, 1984
  • Stabilization of Organic Soils Archived 22 February 2012 at the Wayback Machine
  • Sheet piling handbook, 2010
[edit]
  • Deep Foundations Institute

 

 

Cement powder in a bag, ready to be mixed with aggregates and water.[1]
Cement block construction examples from the Multiplex Manufacturing Company of Toledo, Ohio, in 1905

A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement mixed with fine aggregate produces mortar for masonry, or with sand and gravel, produces concrete. Concrete is the most widely used material in existence and is behind only water as the planet's most-consumed resource.[2]

Cements used in construction are usually inorganic, often lime- or calcium silicate-based, and are either hydraulic or less commonly non-hydraulic, depending on the ability of the cement to set in the presence of water (see hydraulic and non-hydraulic lime plaster).

Hydraulic cements (e.g., Portland cement) set and become adhesive through a chemical reaction between the dry ingredients and water. The chemical reaction results in mineral hydrates that are not very water-soluble. This allows setting in wet conditions or under water and further protects the hardened material from chemical attack. The chemical process for hydraulic cement was found by ancient Romans who used volcanic ash (pozzolana) with added lime (calcium oxide).

Non-hydraulic cement (less common) does not set in wet conditions or under water. Rather, it sets as it dries and reacts with carbon dioxide in the air. It is resistant to attack by chemicals after setting.

The word "cement" can be traced back to the Ancient Roman term opus caementicium, used to describe masonry resembling modern concrete that was made from crushed rock with burnt lime as binder.[3] The volcanic ash and pulverized brick supplements that were added to the burnt lime, to obtain a hydraulic binder, were later referred to as cementum, cimentum, cäment, and cement. In modern times, organic polymers are sometimes used as cements in concrete.

World production of cement is about 4.4 billion tonnes per year (2021, estimation),[4][5] of which about half is made in China, followed by India and Vietnam.[4][6]

The cement production process is responsible for nearly 8% (2018) of global CO2 emissions,[5] which includes heating raw materials in a cement kiln by fuel combustion and release of CO2 stored in the calcium carbonate (calcination process). Its hydrated products, such as concrete, gradually reabsorb atmospheric CO2 (carbonation process), compensating for approximately 30% of the initial CO2 emissions.[7]

Chemistry

[edit]

Cement materials can be classified into two distinct categories: hydraulic cements and non-hydraulic cements according to their respective setting and hardening mechanisms. Hydraulic cement setting and hardening involves hydration reactions and therefore requires water, while non-hydraulic cements only react with a gas and can directly set under air.

Hydraulic cement

[edit]
Clinker nodules produced by sintering at 1450 °C

By far the most common type of cement is hydraulic cement, which hardens by hydration (when water is added) of the clinker minerals. Hydraulic cements (such as Portland cement) are made of a mixture of silicates and oxides, the four main mineral phases of the clinker, abbreviated in the cement chemist notation, being:

C3S: alite (3CaO·SiO2);
C2S: belite (2CaO·SiO2);
C3A: tricalcium aluminate (3CaO·Al2O3) (historically, and still occasionally, called celite);
C4AF: brownmillerite (4CaO·Al2O3·Fe2O3).

The silicates are responsible for the cement's mechanical properties — the tricalcium aluminate and brownmillerite are essential for the formation of the liquid phase during the sintering (firing) process of clinker at high temperature in the kiln. The chemistry of these reactions is not completely clear and is still the object of research.[8]

First, the limestone (calcium carbonate) is burned to remove its carbon, producing lime (calcium oxide) in what is known as a calcination reaction. This single chemical reaction is a major emitter of global carbon dioxide emissions.[9]

The lime reacts with silicon dioxide to produce dicalcium silicate and tricalcium silicate.

The lime also reacts with aluminium oxide to form tricalcium aluminate.

In the last step, calcium oxide, aluminium oxide, and ferric oxide react together to form brownmillerite.

Non-hydraulic cement

[edit]
Calcium oxide obtained by thermal decomposition of calcium carbonate at high temperature (above 825 °C).

A less common form of cement is non-hydraulic cement, such as slaked lime (calcium oxide mixed with water), which hardens by carbonation in contact with carbon dioxide, which is present in the air (~ 412 vol. ppm ≃ 0.04 vol. %). First calcium oxide (lime) is produced from calcium carbonate (limestone or chalk) by calcination at temperatures above 825 °C (1,517 °F) for about 10 hours at atmospheric pressure:

The calcium oxide is then spent (slaked) by mixing it with water to make slaked lime (calcium hydroxide):

Once the excess water is completely evaporated (this process is technically called setting), the carbonation starts:

This reaction is slow, because the partial pressure of carbon dioxide in the air is low (~ 0.4 millibar). The carbonation reaction requires that the dry cement be exposed to air, so the slaked lime is a non-hydraulic cement and cannot be used under water. This process is called the lime cycle.

History

[edit]

Perhaps the earliest known occurrence of cement is from twelve million years ago. A deposit of cement was formed after an occurrence of oil shale located adjacent to a bed of limestone burned by natural causes. These ancient deposits were investigated in the 1960s and 1970s.[10]

Alternatives to cement used in antiquity

[edit]

Cement, chemically speaking, is a product that includes lime as the primary binding ingredient, but is far from the first material used for cementation. The Babylonians and Assyrians used bitumen (asphalt or pitch) to bind together burnt brick or alabaster slabs. In Ancient Egypt, stone blocks were cemented together with a mortar made of sand and roughly burnt gypsum (CaSO4 · 2H2O), which is plaster of Paris, which often contained calcium carbonate (CaCO3),[11]

Ancient Greece and Rome

[edit]

Lime (calcium oxide) was used on Crete and by the Ancient Greeks. There is evidence that the Minoans of Crete used crushed potsherds as an artificial pozzolan for hydraulic cement.[11] Nobody knows who first discovered that a combination of hydrated non-hydraulic lime and a pozzolan produces a hydraulic mixture (see also: Pozzolanic reaction), but such concrete was used by the Greeks, specifically the Ancient Macedonians,[12][13] and three centuries later on a large scale by Roman engineers.[14][15][16]

There is... a kind of powder which from natural causes produces astonishing results. It is found in the neighborhood of Baiae and in the country belonging to the towns round about Mount Vesuvius. This substance when mixed with lime and rubble not only lends strength to buildings of other kinds but even when piers of it are constructed in the sea, they set hard underwater.

— Marcus Vitruvius Pollio, Liber II, De Architectura, Chapter VI "Pozzolana" Sec. 1

The Greeks used volcanic tuff from the island of Thera as their pozzolan and the Romans used crushed volcanic ash (activated aluminium silicates) with lime. This mixture could set under water, increasing its resistance to corrosion like rust.[17] The material was called pozzolana from the town of Pozzuoli, west of Naples where volcanic ash was extracted.[18] In the absence of pozzolanic ash, the Romans used powdered brick or pottery as a substitute and they may have used crushed tiles for this purpose before discovering natural sources near Rome.[11] The huge dome of the Pantheon in Rome and the massive Baths of Caracalla are examples of ancient structures made from these concretes, many of which still stand.[19][2] The vast system of Roman aqueducts also made extensive use of hydraulic cement.[20] Roman concrete was rarely used on the outside of buildings. The normal technique was to use brick facing material as the formwork for an infill of mortar mixed with an aggregate of broken pieces of stone, brick, potsherds, recycled chunks of concrete, or other building rubble.[21]

Mesoamerica

[edit]

Lightweight concrete was designed and used for the construction of structural elements by the pre-Columbian builders who lived in a very advanced civilisation in El Tajin near Mexico City, in Mexico. A detailed study of the composition of the aggregate and binder show that the aggregate was pumice and the binder was a pozzolanic cement made with volcanic ash and lime.[22]

Middle Ages

[edit]

Any preservation of this knowledge in literature from the Middle Ages is unknown, but medieval masons and some military engineers actively used hydraulic cement in structures such as canals, fortresses, harbors, and shipbuilding facilities.[23][24] A mixture of lime mortar and aggregate with brick or stone facing material was used in the Eastern Roman Empire as well as in the West into the Gothic period. The German Rhineland continued to use hydraulic mortar throughout the Middle Ages, having local pozzolana deposits called trass.[21]

16th century

[edit]

Tabby is a building material made from oyster shell lime, sand, and whole oyster shells to form a concrete. The Spanish introduced it to the Americas in the sixteenth century.[25]

18th century

[edit]

The technical knowledge for making hydraulic cement was formalized by French and British engineers in the 18th century.[23]

John Smeaton made an important contribution to the development of cements while planning the construction of the third Eddystone Lighthouse (1755–59) in the English Channel now known as Smeaton's Tower. He needed a hydraulic mortar that would set and develop some strength in the twelve-hour period between successive high tides. He performed experiments with combinations of different limestones and additives including trass and pozzolanas[11] and did exhaustive market research on the available hydraulic limes, visiting their production sites, and noted that the "hydraulicity" of the lime was directly related to the clay content of the limestone used to make it. Smeaton was a civil engineer by profession, and took the idea no further.

In the South Atlantic seaboard of the United States, tabby relying on the oyster-shell middens of earlier Native American populations was used in house construction from the 1730s to the 1860s.[25]

In Britain particularly, good quality building stone became ever more expensive during a period of rapid growth, and it became a common practice to construct prestige buildings from the new industrial bricks, and to finish them with a stucco to imitate stone. Hydraulic limes were favored for this, but the need for a fast set time encouraged the development of new cements. Most famous was Parker's "Roman cement".[26] This was developed by James Parker in the 1780s, and finally patented in 1796. It was, in fact, nothing like material used by the Romans, but was a "natural cement" made by burning septaria – nodules that are found in certain clay deposits, and that contain both clay minerals and calcium carbonate. The burnt nodules were ground to a fine powder. This product, made into a mortar with sand, set in 5–15 minutes. The success of "Roman cement" led other manufacturers to develop rival products by burning artificial hydraulic lime cements of clay and chalk. Roman cement quickly became popular but was largely replaced by Portland cement in the 1850s.[11]

19th century

[edit]

Apparently unaware of Smeaton's work, the same principle was identified by Frenchman Louis Vicat in the first decade of the nineteenth century. Vicat went on to devise a method of combining chalk and clay into an intimate mixture, and, burning this, produced an "artificial cement" in 1817[27] considered the "principal forerunner"[11] of Portland cement and "...Edgar Dobbs of Southwark patented a cement of this kind in 1811."[11]

In Russia, Egor Cheliev created a new binder by mixing lime and clay. His results were published in 1822 in his book A Treatise on the Art to Prepare a Good Mortar published in St. Petersburg. A few years later in 1825, he published another book, which described various methods of making cement and concrete, and the benefits of cement in the construction of buildings and embankments.[28][29]

William Aspdin is considered the inventor of "modern" Portland cement.[30]

Portland cement, the most common type of cement in general use around the world as a basic ingredient of concrete, mortar, stucco, and non-speciality grout, was developed in England in the mid 19th century, and usually originates from limestone. James Frost produced what he called "British cement" in a similar manner around the same time, but did not obtain a patent until 1822.[31] In 1824, Joseph Aspdin patented a similar material, which he called Portland cement, because the render made from it was in color similar to the prestigious Portland stone quarried on the Isle of Portland, Dorset, England. However, Aspdins' cement was nothing like modern Portland cement but was a first step in its development, called a proto-Portland cement.[11] Joseph Aspdins' son William Aspdin had left his father's company and in his cement manufacturing apparently accidentally produced calcium silicates in the 1840s, a middle step in the development of Portland cement. William Aspdin's innovation was counterintuitive for manufacturers of "artificial cements", because they required more lime in the mix (a problem for his father), a much higher kiln temperature (and therefore more fuel), and the resulting clinker was very hard and rapidly wore down the millstones, which were the only available grinding technology of the time. Manufacturing costs were therefore considerably higher, but the product set reasonably slowly and developed strength quickly, thus opening up a market for use in concrete. The use of concrete in construction grew rapidly from 1850 onward, and was soon the dominant use for cements. Thus Portland cement began its predominant role. Isaac Charles Johnson further refined the production of meso-Portland cement (middle stage of development) and claimed he was the real father of Portland cement.[32]

Setting time and "early strength" are important characteristics of cements. Hydraulic limes, "natural" cements, and "artificial" cements all rely on their belite (2 CaO · SiO2, abbreviated as C2S) content for strength development. Belite develops strength slowly. Because they were burned at temperatures below 1,250 °C (2,280 °F), they contained no alite (3 CaO · SiO2, abbreviated as C3S), which is responsible for early strength in modern cements. The first cement to consistently contain alite was made by William Aspdin in the early 1840s: This was what we call today "modern" Portland cement. Because of the air of mystery with which William Aspdin surrounded his product, others (e.g., Vicat and Johnson) have claimed precedence in this invention, but recent analysis[33] of both his concrete and raw cement have shown that William Aspdin's product made at Northfleet, Kent was a true alite-based cement. However, Aspdin's methods were "rule-of-thumb": Vicat is responsible for establishing the chemical basis of these cements, and Johnson established the importance of sintering the mix in the kiln.

In the US the first large-scale use of cement was Rosendale cement, a natural cement mined from a massive deposit of dolomite discovered in the early 19th century near Rosendale, New York. Rosendale cement was extremely popular for the foundation of buildings (e.g., Statue of Liberty, Capitol Building, Brooklyn Bridge) and lining water pipes.[34] Sorel cement, or magnesia-based cement, was patented in 1867 by the Frenchman Stanislas Sorel.[35] It was stronger than Portland cement but its poor water resistance (leaching) and corrosive properties (pitting corrosion due to the presence of leachable chloride anions and the low pH (8.5–9.5) of its pore water) limited its use as reinforced concrete for building construction.[36]

The next development in the manufacture of Portland cement was the introduction of the rotary kiln. It produced a clinker mixture that was both stronger, because more alite (C3S) is formed at the higher temperature it achieved (1450 °C), and more homogeneous. Because raw material is constantly fed into a rotary kiln, it allowed a continuous manufacturing process to replace lower capacity batch production processes.[11]

20th century

[edit]
The National Cement Share Company of Ethiopia's new plant in Dire Dawa

Calcium aluminate cements were patented in 1908 in France by Jules Bied for better resistance to sulfates.[37] Also in 1908, Thomas Edison experimented with pre-cast concrete in houses in Union, N.J.[38]

In the US, after World War One, the long curing time of at least a month for Rosendale cement made it unpopular for constructing highways and bridges, and many states and construction firms turned to Portland cement. Because of the switch to Portland cement, by the end of the 1920s only one of the 15 Rosendale cement companies had survived. But in the early 1930s, builders discovered that, while Portland cement set faster, it was not as durable, especially for highways—to the point that some states stopped building highways and roads with cement. Bertrain H. Wait, an engineer whose company had helped construct the New York City's Catskill Aqueduct, was impressed with the durability of Rosendale cement, and came up with a blend of both Rosendale and Portland cements that had the good attributes of both. It was highly durable and had a much faster setting time. Wait convinced the New York Commissioner of Highways to construct an experimental section of highway near New Paltz, New York, using one sack of Rosendale to six sacks of Portland cement. It was a success, and for decades the Rosendale-Portland cement blend was used in concrete highway and concrete bridge construction.[34]

Cementitious materials have been used as a nuclear waste immobilizing matrix for more than a half-century.[39] Technologies of waste cementation have been developed and deployed at industrial scale in many countries. Cementitious wasteforms require a careful selection and design process adapted to each specific type of waste to satisfy the strict waste acceptance criteria for long-term storage and disposal.[40]

Types

[edit]
Components of cement:
comparison of chemical and physical characteristics[a][41][42][43]
Property Portland
cement
Siliceous[b]
fly ash
Calcareous[c]
fly ash
Slag
cement
Silica
fume
Proportion by mass (%)
SiO2 21.9 52 35 35 85–97
Al2O3 6.9 23 18 12
Fe2O3 3 11 6 1
CaO 63 5 21 40 < 1
MgO 2.5
SO3 1.7
Specific surface (m2/kg)[d] 370 420 420 400 15,000
– 30,000
Specific gravity 3.15 2.38 2.65 2.94 2.22
General purpose Primary binder Cement replacement Cement replacement Cement replacement Property enhancer
  1. ^ Values shown are approximate: those of a specific material may vary.
  2. ^ ASTM C618 Class F
  3. ^ ASTM C618 Class C
  4. ^ Specific surface measurements for silica fume by nitrogen adsorption (BET) method, others by air permeability method (Blaine).

Modern development of hydraulic cement began with the start of the Industrial Revolution (around 1800), driven by three main needs:

  • Hydraulic cement render (stucco) for finishing brick buildings in wet climates
  • Hydraulic mortars for masonry construction of harbor works, etc., in contact with sea water
  • Development of strong concretes

Modern cements are often Portland cement or Portland cement blends, but other cement blends are used in some industrial settings.

Portland cement

[edit]

Portland cement, a form of hydraulic cement, is by far the most common type of cement in general use around the world. This cement is made by heating limestone (calcium carbonate) with other materials (such as clay) to 1,450 °C (2,640 °F) in a kiln, in a process known as calcination that liberates a molecule of carbon dioxide from the calcium carbonate to form calcium oxide, or quicklime, which then chemically combines with the other materials in the mix to form calcium silicates and other cementitious compounds. The resulting hard substance, called 'clinker', is then ground with a small amount of gypsum ( CaSO4·2H2O) into a powder to make ordinary Portland cement, the most commonly used type of cement (often referred to as OPC). Portland cement is a basic ingredient of concrete, mortar, and most non-specialty grout. The most common use for Portland cement is to make concrete. Portland cement may be grey or white.

Portland cement blend

[edit]

Portland cement blends are often available as inter-ground mixtures from cement producers, but similar formulations are often also mixed from the ground components at the concrete mixing plant.

Portland blast-furnace slag cement, or blast furnace cement (ASTM C595 and EN 197-1 nomenclature respectively), contains up to 95% ground granulated blast furnace slag, with the rest Portland clinker and a little gypsum. All compositions produce high ultimate strength, but as slag content is increased, early strength is reduced, while sulfate resistance increases and heat evolution diminishes. Used as an economic alternative to Portland sulfate-resisting and low-heat cements.

Portland-fly ash cement contains up to 40% fly ash under ASTM standards (ASTM C595), or 35% under EN standards (EN 197–1). The fly ash is pozzolanic, so that ultimate strength is maintained. Because fly ash addition allows a lower concrete water content, early strength can also be maintained. Where good quality cheap fly ash is available, this can be an economic alternative to ordinary Portland cement.[44]

Portland pozzolan cement includes fly ash cement, since fly ash is a pozzolan, but also includes cements made from other natural or artificial pozzolans. In countries where volcanic ashes are available (e.g., Italy, Chile, Mexico, the Philippines), these cements are often the most common form in use. The maximum replacement ratios are generally defined as for Portland-fly ash cement.

Portland silica fume cement. Addition of silica fume can yield exceptionally high strengths, and cements containing 5–20% silica fume are occasionally produced, with 10% being the maximum allowed addition under EN 197–1. However, silica fume is more usually added to Portland cement at the concrete mixer.[45]

Masonry cements are used for preparing bricklaying mortars and stuccos, and must not be used in concrete. They are usually complex proprietary formulations containing Portland clinker and a number of other ingredients that may include limestone, hydrated lime, air entrainers, retarders, waterproofers, and coloring agents. They are formulated to yield workable mortars that allow rapid and consistent masonry work. Subtle variations of masonry cement in North America are plastic cements and stucco cements. These are designed to produce a controlled bond with masonry blocks.

Expansive cements contain, in addition to Portland clinker, expansive clinkers (usually sulfoaluminate clinkers), and are designed to offset the effects of drying shrinkage normally encountered in hydraulic cements. This cement can make concrete for floor slabs (up to 60 m square) without contraction joints.

White blended cements may be made using white clinker (containing little or no iron) and white supplementary materials such as high-purity metakaolin. Colored cements serve decorative purposes. Some standards allow the addition of pigments to produce colored Portland cement. Other standards (e.g., ASTM) do not allow pigments in Portland cement, and colored cements are sold as blended hydraulic cements.

Very finely ground cements are cement mixed with sand or with slag or other pozzolan type minerals that are extremely finely ground together. Such cements can have the same physical characteristics as normal cement but with 50% less cement, particularly because there is more surface area for the chemical reaction. Even with intensive grinding they can use up to 50% less energy (and thus less carbon emissions) to fabricate than ordinary Portland cements.[46]

Other

[edit]

Pozzolan-lime cements are mixtures of ground pozzolan and lime. These are the cements the Romans used, and are present in surviving Roman structures like the Pantheon in Rome. They develop strength slowly, but their ultimate strength can be very high. The hydration products that produce strength are essentially the same as those in Portland cement.

Slag-lime cements—ground granulated blast-furnace slag—are not hydraulic on their own, but are "activated" by addition of alkalis, most economically using lime. They are similar to pozzolan lime cements in their properties. Only granulated slag (i.e., water-quenched, glassy slag) is effective as a cement component.

Supersulfated cements contain about 80% ground granulated blast furnace slag, 15% gypsum or anhydrite and a little Portland clinker or lime as an activator. They produce strength by formation of ettringite, with strength growth similar to a slow Portland cement. They exhibit good resistance to aggressive agents, including sulfate.

Calcium aluminate cements are hydraulic cements made primarily from limestone and bauxite. The active ingredients are monocalcium aluminate CaAl2O4 (CaO · Al2O3 or CA in cement chemist notation, CCN) and mayenite Ca12Al14O33 (12 CaO · 7 Al2O3, or C12A7 in CCN). Strength forms by hydration to calcium aluminate hydrates. They are well-adapted for use in refractory (high-temperature resistant) concretes, e.g., for furnace linings.

Calcium sulfoaluminate cements are made from clinkers that include ye'elimite (Ca4(AlO2)6SO4 or C4A3S in Cement chemist's notation) as a primary phase. They are used in expansive cements, in ultra-high early strength cements, and in "low-energy" cements. Hydration produces ettringite, and specialized physical properties (such as expansion or rapid reaction) are obtained by adjustment of the availability of calcium and sulfate ions. Their use as a low-energy alternative to Portland cement has been pioneered in China, where several million tonnes per year are produced.[47][48] Energy requirements are lower because of the lower kiln temperatures required for reaction, and the lower amount of limestone (which must be endothermically decarbonated) in the mix. In addition, the lower limestone content and lower fuel consumption leads to a CO
2
emission around half that associated with Portland clinker. However, SO2 emissions are usually significantly higher.

"Natural" cements corresponding to certain cements of the pre-Portland era, are produced by burning argillaceous limestones at moderate temperatures. The level of clay components in the limestone (around 30–35%) is such that large amounts of belite (the low-early strength, high-late strength mineral in Portland cement) are formed without the formation of excessive amounts of free lime. As with any natural material, such cements have highly variable properties.

Geopolymer cements are made from mixtures of water-soluble alkali metal silicates, and aluminosilicate mineral powders such as fly ash and metakaolin.

Polymer cements are made from organic chemicals that polymerise. Producers often use thermoset materials. While they are often significantly more expensive, they can give a water proof material that has useful tensile strength.

Sorel cement is a hard, durable cement made by combining magnesium oxide and a magnesium chloride solution

Fiber mesh cement or fiber reinforced concrete is cement that is made up of fibrous materials like synthetic fibers, glass fibers, natural fibers, and steel fibers. This type of mesh is distributed evenly throughout the wet concrete. The purpose of fiber mesh is to reduce water loss from the concrete as well as enhance its structural integrity.[49] When used in plasters, fiber mesh increases cohesiveness, tensile strength, impact resistance, and to reduce shrinkage; ultimately, the main purpose of these combined properties is to reduce cracking.[50]

Electric cement is proposed to be made by recycling cement from demolition wastes in an electric arc furnace as part of a steelmaking process. The recycled cement is intended to be used to replace part or all of the lime used in steelmaking, resulting in a slag-like material that is similar in mineralogy to Portland cement, eliminating most of the associated carbon emissions.[51]

Setting, hardening and curing

[edit]

Cement starts to set when mixed with water, which causes a series of hydration chemical reactions. The constituents slowly hydrate and the mineral hydrates solidify and harden. The interlocking of the hydrates gives cement its strength. Contrary to popular belief, hydraulic cement does not set by drying out — proper curing requires maintaining the appropriate moisture content necessary for the hydration reactions during the setting and the hardening processes. If hydraulic cements dry out during the curing phase, the resulting product can be insufficiently hydrated and significantly weakened. A minimum temperature of 5 °C is recommended, and no more than 30 °C.[52] The concrete at young age must be protected against water evaporation due to direct insolation, elevated temperature, low relative humidity and wind.

The interfacial transition zone (ITZ) is a region of the cement paste around the aggregate particles in concrete. In the zone, a gradual transition in the microstructural features occurs.[53] This zone can be up to 35 micrometer wide.[54]: 351  Other studies have shown that the width can be up to 50 micrometer. The average content of unreacted clinker phase decreases and porosity decreases towards the aggregate surface. Similarly, the content of ettringite increases in ITZ. [54]: 352 

Safety issues

[edit]

Bags of cement routinely have health and safety warnings printed on them because not only is cement highly alkaline, but the setting process is exothermic. As a result, wet cement is strongly caustic (pH = 13.5) and can easily cause severe skin burns if not promptly washed off with water. Similarly, dry cement powder in contact with mucous membranes can cause severe eye or respiratory irritation. Some trace elements, such as chromium, from impurities naturally present in the raw materials used to produce cement may cause allergic dermatitis.[55] Reducing agents such as ferrous sulfate (FeSO4) are often added to cement to convert the carcinogenic hexavalent chromate (CrO42−) into trivalent chromium (Cr3+), a less toxic chemical species. Cement users need also to wear appropriate gloves and protective clothing.[56]

Cement industry in the world

[edit]
Global cement production (2022)
Global cement production in 2022
Global cement capacity (2022)
Global cement capacity in 2022

In 2010, the world production of hydraulic cement was 3,300 megatonnes (3,600×10^6 short tons). The top three producers were China with 1,800, India with 220, and the United States with 63.5 million tonnes for a total of over half the world total by the world's three most populated states.[57]

For the world capacity to produce cement in 2010, the situation was similar with the top three states (China, India, and the US) accounting for just under half the world total capacity.[58]

Over 2011 and 2012, global consumption continued to climb, rising to 3585 Mt in 2011 and 3736 Mt in 2012, while annual growth rates eased to 8.3% and 4.2%, respectively.

China, representing an increasing share of world cement consumption, remains the main engine of global growth. By 2012, Chinese demand was recorded at 2160 Mt, representing 58% of world consumption. Annual growth rates, which reached 16% in 2010, appear to have softened, slowing to 5–6% over 2011 and 2012, as China's economy targets a more sustainable growth rate.

Outside of China, worldwide consumption climbed by 4.4% to 1462 Mt in 2010, 5% to 1535 Mt in 2011, and finally 2.7% to 1576 Mt in 2012.

Iran is now the 3rd largest cement producer in the world and has increased its output by over 10% from 2008 to 2011.[59] Because of climbing energy costs in Pakistan and other major cement-producing countries, Iran is in a unique position as a trading partner, utilizing its own surplus petroleum to power clinker plants. Now a top producer in the Middle-East, Iran is further increasing its dominant position in local markets and abroad.[60]

The performance in North America and Europe over the 2010–12 period contrasted strikingly with that of China, as the global financial crisis evolved into a sovereign debt crisis for many economies in this region[clarification needed] and recession. Cement consumption levels for this region fell by 1.9% in 2010 to 445 Mt, recovered by 4.9% in 2011, then dipped again by 1.1% in 2012.

The performance in the rest of the world, which includes many emerging economies in Asia, Africa and Latin America and representing some 1020 Mt cement demand in 2010, was positive and more than offset the declines in North America and Europe. Annual consumption growth was recorded at 7.4% in 2010, moderating to 5.1% and 4.3% in 2011 and 2012, respectively.

As at year-end 2012, the global cement industry consisted of 5673 cement production facilities, including both integrated and grinding, of which 3900 were located in China and 1773 in the rest of the world.

Total cement capacity worldwide was recorded at 5245 Mt in 2012, with 2950 Mt located in China and 2295 Mt in the rest of the world.[6]

China

[edit]

"For the past 18 years, China consistently has produced more cement than any other country in the world. [...] (However,) China's cement export peaked in 1994 with 11 million tonnes shipped out and has been in steady decline ever since. Only 5.18 million tonnes were exported out of China in 2002. Offered at $34 a ton, Chinese cement is pricing itself out of the market as Thailand is asking as little as $20 for the same quality."[61]

In 2006, it was estimated that China manufactured 1.235 billion tonnes of cement, which was 44% of the world total cement production.[62] "Demand for cement in China is expected to advance 5.4% annually and exceed 1 billion tonnes in 2008, driven by slowing but healthy growth in construction expenditures. Cement consumed in China will amount to 44% of global demand, and China will remain the world's largest national consumer of cement by a large margin."[63]

In 2010, 3.3 billion tonnes of cement was consumed globally. Of this, China accounted for 1.8 billion tonnes.[64]

Environmental impacts

[edit]

Cement manufacture causes environmental impacts at all stages of the process. These include emissions of airborne pollution in the form of dust, gases, noise and vibration when operating machinery and during blasting in quarries, and damage to countryside from quarrying. Equipment to reduce dust emissions during quarrying and manufacture of cement is widely used, and equipment to trap and separate exhaust gases are coming into increased use. Environmental protection also includes the re-integration of quarries into the countryside after they have been closed down by returning them to nature or re-cultivating them.

CO
2
emissions

[edit]
Global carbon emission by type to 2018
Global carbon emission by type to 2018

Carbon concentration in cement spans from ≈5% in cement structures to ≈8% in the case of roads in cement.[65] Cement manufacturing releases CO2 in the atmosphere both directly when calcium carbonate is heated, producing lime and carbon dioxide,[66][67] and also indirectly through the use of energy if its production involves the emission of CO
2
. The cement industry produces about 10% of global human-made CO
2
emissions, of which 60% is from the chemical process, and 40% from burning fuel.[68] A Chatham House study from 2018 estimates that the 4 billion tonnes of cement produced annually account for 8% of worldwide CO
2
emissions.[5]

Nearly 900 kg of CO
2
are emitted for every 1000 kg of Portland cement produced. In the European Union, the specific energy consumption for the production of cement clinker has been reduced by approximately 30% since the 1970s. This reduction in primary energy requirements is equivalent to approximately 11 million tonnes of coal per year with corresponding benefits in reduction of CO
2
emissions. This accounts for approximately 5% of anthropogenic CO
2
.[69]

The majority of carbon dioxide emissions in the manufacture of Portland cement (approximately 60%) are produced from the chemical decomposition of limestone to lime, an ingredient in Portland cement clinker. These emissions may be reduced by lowering the clinker content of cement. They can also be reduced by alternative fabrication methods such as the intergrinding cement with sand or with slag or other pozzolan type minerals to a very fine powder.[70]

To reduce the transport of heavier raw materials and to minimize the associated costs, it is more economical to build cement plants closer to the limestone quarries rather than to the consumer centers.[71]

As of 2019 carbon capture and storage is about to be trialed, but its financial viability is uncertain.[72]

CO
2
absorption

[edit]

Hydrated products of Portland cement, such as concrete and mortars, slowly reabsorb atmospheric CO2 gas, which has been released during calcination in a kiln. This natural process, reversed to calcination, is called carbonation.[73] As it depends on CO2 diffusion into the bulk of concrete, its rate depends on many parameters, such as environmental conditions and surface area exposed to the atmosphere.[74][75] Carbonation is particularly significant at the latter stages of the concrete life - after demolition and crushing of the debris. It was estimated that during the whole life-cycle of cement products, it can be reabsorbed nearly 30% of atmospheric CO2 generated by cement production.[75]

Carbonation process is considered as a mechanism of concrete degradation. It reduces pH of concrete that promotes reinforcement steel corrosion.[73] However, as the product of Ca(OH)2 carbonation, CaCO3, occupies a greater volume, porosity of concrete reduces. This increases strength and hardness of concrete.[76]

There are proposals to reduce carbon footprint of hydraulic cement by adopting non-hydraulic cement, lime mortar, for certain applications. It reabsorbs some of the CO
2
during hardening, and has a lower energy requirement in production than Portland cement.[77]

A few other attempts to increase absorption of carbon dioxide include cements based on magnesium (Sorel cement).[78][79][80]

Heavy metal emissions in the air

[edit]

In some circumstances, mainly depending on the origin and the composition of the raw materials used, the high-temperature calcination process of limestone and clay minerals can release in the atmosphere gases and dust rich in volatile heavy metals, e.g. thallium,[81] cadmium and mercury are the most toxic. Heavy metals (Tl, Cd, Hg, ...) and also selenium are often found as trace elements in common metal sulfides (pyrite (FeS2), zinc blende (ZnS), galena (PbS), ...) present as secondary minerals in most of the raw materials. Environmental regulations exist in many countries to limit these emissions. As of 2011 in the United States, cement kilns are "legally allowed to pump more toxins into the air than are hazardous-waste incinerators."[82]

Heavy metals present in the clinker

[edit]

The presence of heavy metals in the clinker arises both from the natural raw materials and from the use of recycled by-products or alternative fuels. The high pH prevailing in the cement porewater (12.5 < pH < 13.5) limits the mobility of many heavy metals by decreasing their solubility and increasing their sorption onto the cement mineral phases. Nickel, zinc and lead are commonly found in cement in non-negligible concentrations. Chromium may also directly arise as natural impurity from the raw materials or as secondary contamination from the abrasion of hard chromium steel alloys used in the ball mills when the clinker is ground. As chromate (CrO42−) is toxic and may cause severe skin allergies at trace concentration, it is sometimes reduced into trivalent Cr(III) by addition of ferrous sulfate (FeSO4).

Use of alternative fuels and by-products materials

[edit]

A cement plant consumes 3 to 6 GJ of fuel per tonne of clinker produced, depending on the raw materials and the process used. Most cement kilns today use coal and petroleum coke as primary fuels, and to a lesser extent natural gas and fuel oil. Selected waste and by-products with recoverable calorific value can be used as fuels in a cement kiln (referred to as co-processing), replacing a portion of conventional fossil fuels, like coal, if they meet strict specifications. Selected waste and by-products containing useful minerals such as calcium, silica, alumina, and iron can be used as raw materials in the kiln, replacing raw materials such as clay, shale, and limestone. Because some materials have both useful mineral content and recoverable calorific value, the distinction between alternative fuels and raw materials is not always clear. For example, sewage sludge has a low but significant calorific value, and burns to give ash containing minerals useful in the clinker matrix.[83] Scrap automobile and truck tires are useful in cement manufacturing as they have high calorific value and the iron embedded in tires is useful as a feed stock.[84]: p. 27 

Clinker is manufactured by heating raw materials inside the main burner of a kiln to a temperature of 1,450 °C. The flame reaches temperatures of 1,800 °C. The material remains at 1,200 °C for 12–15 seconds at 1,800 °C or sometimes for 5–8 seconds (also referred to as residence time). These characteristics of a clinker kiln offer numerous benefits and they ensure a complete destruction of organic compounds, a total neutralization of acid gases, sulphur oxides and hydrogen chloride. Furthermore, heavy metal traces are embedded in the clinker structure and no by-products, such as ash or residues, are produced.[85]

The EU cement industry already uses more than 40% fuels derived from waste and biomass in supplying the thermal energy to the grey clinker making process. Although the choice for this so-called alternative fuels (AF) is typically cost driven, other factors are becoming more important. Use of alternative fuels provides benefits for both society and the company: CO
2
-emissions are lower than with fossil fuels, waste can be co-processed in an efficient and sustainable manner and the demand for certain virgin materials can be reduced. Yet there are large differences in the share of alternative fuels used between the European Union (EU) member states. The societal benefits could be improved if more member states increase their alternative fuels share. The Ecofys study[86] assessed the barriers and opportunities for further uptake of alternative fuels in 14 EU member states. The Ecofys study found that local factors constrain the market potential to a much larger extent than the technical and economic feasibility of the cement industry itself.

Reduced-footprint cement

[edit]

Growing environmental concerns and the increasing cost of fossil fuels have resulted, in many countries, in a sharp reduction of the resources needed to produce cement, as well as effluents (dust and exhaust gases).[87] Reduced-footprint cement is a cementitious material that meets or exceeds the functional performance capabilities of Portland cement. Various techniques are under development. One is geopolymer cement, which incorporates recycled materials, thereby reducing consumption of raw materials, water, and energy. Another approach is to reduce or eliminate the production and release of damaging pollutants and greenhouse gasses, particularly CO
2
.[88] Recycling old cement in electric arc furnaces is another approach.[89] Also, a team at the University of Edinburgh has developed the 'DUPE' process based on the microbial activity of Sporosarcina pasteurii, a bacterium precipitating calcium carbonate, which, when mixed with sand and urine, can produce mortar blocks with a compressive strength 70% of that of concrete.[90] An overview of climate-friendly methods for cement production can be found here.[91]

See also

[edit]
  • Asphalt concrete
  • Calcium aluminate cements
  • Cement chemist notation
  • Cement render
  • Cenocell
  • Energetically modified cement (EMC)
  • Fly ash
  • Geopolymer cement
  • Portland cement
  • Rosendale cement
  • Sulfate attack in concrete and mortar
  • Sulfur concrete
  • Tiocem
  • List of countries by cement production

References

[edit]
  1. ^ "Draeger: Guide for selection and use of filtering devices" (PDF). Draeger. 22 May 2020. Archived (PDF) from the original on 22 May 2020. Retrieved 22 May 2020.
  2. ^ a b Rodgers, Lucy (17 December 2018). "The massive CO
    2
    emitter you may not know about". BBC News. Retrieved 17 December 2018.
  3. ^ Cement Analyst, Milan A (2015), Lancaster, Lynne C. (ed.), "Opus Caementicium", Innovative Vaulting in the Architecture of the Roman Empire: 1st to 4th Centuries CE, Cambridge: Cambridge University Press, pp. 19–38, ISBN 978-1-107-05935-1, retrieved 7 March 2025
  4. ^ a b "Cement" (PDF). United States Geological Survey (USGS). Retrieved 26 September 2023.
  5. ^ a b c "Making Concrete Change: Innovation in Low-carbon Cement and Concrete". Chatham House. 13 June 2018. Archived from the original on 19 December 2018. Retrieved 17 December 2018.
  6. ^ a b Hargreaves, David (March 2013). "The Global Cement Report 10th Edition" (PDF). International Cement Review. Archived (PDF) from the original on 26 November 2013.
  7. ^ Cao, Zhi; Myers, Rupert J.; Lupton, Richard C.; Duan, Huabo; Sacchi, Romain; Zhou, Nan; Reed Miller, T.; Cullen, Jonathan M.; Ge, Quansheng; Liu, Gang (29 July 2020). "The sponge effect and carbon emission mitigation potentials of the global cement cycle". Nature Communications. 11 (1): 3777. Bibcode:2020NatCo..11.3777C. doi:10.1038/s41467-020-17583-w. ISSN 2041-1723. PMC 7392754. PMID 32728073.
  8. ^ "Cement's basic molecular structure finally decoded (MIT, 2009)". Archived from the original on 21 February 2013.
  9. ^ "EPA Overview of Greenhouse Gases". 23 December 2015.
  10. ^ "The History of Concrete". Dept. of Materials Science and Engineering, University of Illinois, Urbana-Champaign. Archived from the original on 27 November 2012. Retrieved 8 January 2013.
  11. ^ a b c d e f g h i Blezard, Robert G. (12 November 2003). "The History of Calcareous Cements". In Hewlett, Peter (ed.). Lea's Chemistry of Cement and Concrete. Elsevier. pp. 1–24. ISBN 978-0-08-053541-8.
  12. ^ Brabant, Malcolm (12 April 2011). Macedonians created cement three centuries before the Romans Archived 9 April 2019 at the Wayback Machine, BBC News.
  13. ^ "Heracles to Alexander The Great: Treasures From The Royal Capital of Macedon, A Hellenic Kingdom in the Age of Democracy". Ashmolean Museum of Art and Archaeology, University of Oxford. Archived from the original on 17 January 2012.
  14. ^ Hill, Donald (19 November 2013). A History of Engineering in Classical and Medieval Times. Routledge. p. 106. ISBN 978-1-317-76157-0.
  15. ^ "History of cement". www.understanding-cement.com. Retrieved 17 December 2018.
  16. ^ Trendacosta, Katharine (18 December 2014). "How the Ancient Romans Made Better Concrete Than We Do Now". Gizmodo.
  17. ^ "How Natural Pozzolans Improve Concrete". Natural Pozzolan Association. Retrieved 7 April 2021.
  18. ^ Ridi, Francesca (April 2010). "Hydration of Cement: still a lot to be understood" (PDF). La Chimica & l'Industria (3): 110–117. Archived (PDF) from the original on 17 November 2015.
  19. ^ "Pure natural pozzolan cement" (PDF). Archived from the original on 18 October 2006. Retrieved 12 January 2009.cite web: CS1 maint: bot: original URL status unknown (link). chamorro.com
  20. ^ Russo, Ralph (2006) "Aqueduct Architecture: Moving Water to the Masses in Ancient Rome" Archived 12 October 2008 at the Wayback Machine, in Math in the Beauty and Realization of Architecture, Vol. IV, Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 1978–2012, Yale-New Haven Teachers Institute.
  21. ^ a b Cowan, Henry J. (1975). "An Historical Note on Concrete". Architectural Science Review. 18: 10–13. doi:10.1080/00038628.1975.9696342.
  22. ^ Cabrera, J. G.; Rivera-Villarreal, R.; Sri Ravindrarajah, R. (1997). "Properties and Durability of a Pre-Columbian Lightweight Concrete". SP-170: Fourth CANMET/ACI International Conference on Durability of Concrete. Vol. 170. pp. 1215–1230. doi:10.14359/6874. ISBN 9780870316692. S2CID 138768044. cite book: |journal= ignored (help)
  23. ^ a b Sismondo, Sergio (20 November 2009). An Introduction to Science and Technology Studies. Wiley. ISBN 978-1-4443-1512-7.
  24. ^ Mukerji, Chandra (2009). Impossible Engineering: Technology and Territoriality on the Canal Du Midi. Princeton University Press. p. 121. ISBN 978-0-691-14032-2.
  25. ^ a b <Taves, Loren Sickels (27 October 2015). "Tabby Houses of the South Atlantic Seaboard". Old-House Journal. Active Interest Media, Inc.: 5.
  26. ^ Francis, A.J. (1977) The Cement Industry 1796–1914: A History, David & Charles. ISBN 0-7153-7386-2, Ch. 2.
  27. ^ "Who Discovered Cement". 12 September 2012. Archived from the original on 4 February 2013.
  28. ^ Znachko-Iavorskii; I. L. (1969). Egor Gerasimovich Chelidze, izobretatelʹ tsementa. Sabchota Sakartvelo. Archived from the original on 1 February 2014.
  29. ^ "Lafarge History of Cement". Archived from the original on 2 February 2014.
  30. ^ Courland, Robert (2011). Concrete planet : the strange and fascinating story of the world's most common man-made material. Amherst, N.Y.: Prometheus Books. p. 190. ISBN 978-1616144814.
  31. ^ Francis, A.J. (1977) The Cement Industry 1796–1914: A History, David & Charles. ISBN 0-7153-7386-2, Ch. 5.
  32. ^ Hahn, Thomas F. and Kemp, Emory Leland (1994). Cement mills along the Potomac River. Morgantown, WV: West Virginia University Press. p. 16. ISBN 9781885907004
  33. ^ Hewlett, Peter (2003). Lea's Chemistry of Cement and Concrete. Butterworth-Heinemann. p. Ch. 1. ISBN 978-0-08-053541-8. Archived from the original on 1 November 2015.
  34. ^ a b "Natural Cement Comes Back". Popular Science. Bonnier Corporation. October 1941. p. 118.
  35. ^ Stanislas Sorel (1867). "Sur un nouveau ciment magnésien". Comptes rendus hebdomadaires des séances de l'Académie des sciences, volume 65, pages 102–104.
  36. ^ Walling, Sam A.; Provis, John L. (2016). "Magnesia-based cements: A journey of 150 years, and cements for the future?". Chemical Reviews. 116 (7): 4170–4204. doi:10.1021/acs.chemrev.5b00463. ISSN 0009-2665. PMID 27002788.
  37. ^ McArthur, H.; Spalding, D. (1 January 2004). Engineering Materials Science: Properties, Uses, Degradation, Remediation. Elsevier. ISBN 9781782420491.
  38. ^ "How Cement Mixers Work". HowStuffWorks. 26 January 2012. Retrieved 2 April 2020.
  39. ^ Glasser F. (2011). Application of inorganic cements to the conditioning and immobilisation of radioactive wastes. In: Ojovan M.I. (2011). Handbook of advanced radioactive waste conditioning technologies. Woodhead, Cambridge, 512 pp.
  40. ^ Abdel Rahman R.O., Rahimov R.Z., Rahimova N.R., Ojovan M.I. (2015). Cementitious materials for nuclear waste immobilization. Wiley, Chichester 232 pp.
  41. ^ Holland, Terence C. (2005). "Silica Fume User's Manual" (PDF). Silica Fume Association and United States Department of Transportation Federal Highway Administration Technical Report FHWA-IF-05-016. Retrieved 31 October 2014.
  42. ^ Kosmatka, S.; Kerkhoff, B.; Panerese, W. (2002). Design and Control of Concrete Mixtures (14 ed.). Portland Cement Association, Skokie, Illinois.
  43. ^ Gamble, William. "Cement, Mortar, and Concrete". In Baumeister; Avallone; Baumeister (eds.). Mark's Handbook for Mechanical Engineers (Eighth ed.). McGraw Hill. Section 6, page 177.
  44. ^ U.S. Federal Highway Administration. "Fly Ash". Archived from the original on 21 June 2007. Retrieved 24 January 2007.
  45. ^ U.S. Federal Highway Administration. "Silica Fume". Archived from the original on 22 January 2007. Retrieved 24 January 2007.
  46. ^ Justnes, Harald; Elfgren, Lennart; Ronin, Vladimir (2005). "Mechanism for performance of energetically modified cement versus corresponding blended cement" (PDF). Cement and Concrete Research. 35 (2): 315–323. doi:10.1016/j.cemconres.2004.05.022. Archived from the original (PDF) on 10 July 2011.
  47. ^ Bye, G.C. (1999). Portland Cement. 2nd Ed., Thomas Telford. pp. 206–208. ISBN 0-7277-2766-4
  48. ^ Zhang, Liang; Su, Muzhen; Wang, Yanmou (1999). "Development of the use of sulfo- and ferroaluminate cements in China". Advances in Cement Research. 11: 15–21. doi:10.1680/adcr.1999.11.1.15.
  49. ^ Munsell, Faith (31 December 2019). "Concrete mesh: When to use fiber mesh or wire mesh | Port Aggregates". Port Aggregates. Retrieved 19 September 2022.
  50. ^ "Plaster / Stucco Manual" (PDF). Cement.org. 2003. p. 13. Retrieved 12 April 2021.
  51. ^ Barnard, Michael (30 May 2024). "Many Green Cement Roads Lead Through Electric Arc Steel Furnaces". CleanTechnica. Retrieved 11 June 2024.
  52. ^ "Using cement based products during winter months". sovchem.co.uk. 29 May 2018. Archived from the original on 29 May 2018.
  53. ^ a b Scrivener, K.L., Crumbie, A.K., and Laugesen P. (2004). "The Interfacial Transition Zone (ITZ) between cement paste and aggregate in concrete." Interface Science, 12 (4), 411–421. doi: 10.1023/B:INTS.0000042339.92990.4c.
  54. ^ a b c H. F. W. Taylor, Cement chemistry, 2nd ed. London: T. Telford, 1997.
  55. ^ "Construction Information Sheet No 26 (revision2)" (PDF). hse.gov.uk. Archived (PDF) from the original on 4 June 2011. Retrieved 15 February 2011.
  56. ^ "CIS26 – cement" (PDF). Archived from the original (PDF) on 4 June 2011. Retrieved 5 May 2011.
  57. ^ United States Geological Survey. "USGS Mineral Program Cement Report. (Jan 2011)" (PDF). Archived (PDF) from the original on 8 October 2011.
  58. ^ Edwards, P; McCaffrey, R. Global Cement Directory 2010. PRo Publications Archived 3 January 2014 at the Wayback Machine. Epsom, UK, 2010.
  59. ^ "Pakistan loses Afghan cement market share to Iran". International Cement Revie. 20 August 2012. Archived from the original on 22 September 2013. Retrieved 2 November 2024.
  60. ^ ICR Newsroom. Pakistan loses Afghan cement market share to Iran Archived 22 September 2013 at the Wayback Machine. Retrieved 19 November 2013.
  61. ^ Yan, Li Yong (7 January 2004) China's way forward paved in cement, Asia Times
  62. ^ "China now no. 1 in CO emissions; USA in second position: more info". NEAA. 19 June 2007. Archived from the original on 3 July 2007.
  63. ^ "China's cement demand to top 1 billion tonnes in 2008". CementAmericas. November 2004. Archived from the original on 27 April 2009.
  64. ^ "Uses of Coal and Cement". World Coal Association. Archived from the original on 8 August 2011.
  65. ^ Scalenghe, R.; Malucelli, F.; Ungaro, F.; Perazzone, L.; Filippi, N.; Edwards, A.C. (2011). "Influence of 150 years of land use on anthropogenic and natural carbon stocks in Emilia-Romagna Region (Italy)". Environmental Science & Technology. 45 (12): 5112–5117. Bibcode:2011EnST...45.5112S. doi:10.1021/es1039437. PMID 21609007.
  66. ^ "EIA – Emissions of Greenhouse Gases in the U.S. 2006-Carbon Dioxide Emissions". US Department of Energy. Archived from the original on 23 May 2011.
  67. ^ Matar, W.; Elshurafa, A. M. (2017). "Striking a balance between profit and carbon dioxide emissions in the Saudi cement industry". International Journal of Greenhouse Gas Control. 61: 111–123. Bibcode:2017IJGGC..61..111M. doi:10.1016/j.ijggc.2017.03.031.
  68. ^ "Trends in global CO
    2
    emissions: 2014 Report" (PDF). PBL Netherlands Environmental Assessment Agency & European Commission Joint Research Centre. 2014. Archived from the original (PDF) on 14 October 2016.
  69. ^ Mahasenan, Natesan; Smith, Steve; Humphreysm Kenneth; Kaya, Y. (2003). "The Cement Industry and Global Climate Change: Current and Potential Future Cement Industry CO
    2
    Emissions". Greenhouse Gas Control Technologies – 6th International Conference. Oxford: Pergamon. pp. 995–1000. ISBN 978-0-08-044276-1.
  70. ^ "Blended Cement". Science Direct. 2015. Retrieved 7 April 2021.
  71. ^ Chandak, Shobhit. "Report on cement industry in India". scribd. Archived from the original on 22 February 2012. Retrieved 21 July 2011.
  72. ^ "World's first zero-emission cement plant takes shape in Norway". Euractiv.com Ltd. 13 December 2018.
  73. ^ a b Pade, Claus; Guimaraes, Maria (1 September 2007). "The CO2 uptake of concrete in a 100 year perspective". Cement and Concrete Research. 37 (9): 1348–1356. doi:10.1016/j.cemconres.2007.06.009. ISSN 0008-8846.
  74. ^ Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn (December 2016). "Substantial global carbon uptake by cement carbonation". Nature Geoscience. 9 (12): 880–883. Bibcode:2016NatGe...9..880X. doi:10.1038/ngeo2840. ISSN 1752-0908.
  75. ^ a b Cao, Zhi; Myers, Rupert J.; Lupton, Richard C.; Duan, Huabo; Sacchi, Romain; Zhou, Nan; Reed Miller, T.; Cullen, Jonathan M.; Ge, Quansheng; Liu, Gang (29 July 2020). "The sponge effect and carbon emission mitigation potentials of the global cement cycle". Nature Communications. 11 (1): 3777. Bibcode:2020NatCo..11.3777C. doi:10.1038/s41467-020-17583-w. hdl:10044/1/81385. ISSN 2041-1723. PMC 7392754. PMID 32728073.
  76. ^ Kim, Jin-Keun; Kim, Chin-Yong; Yi, Seong-Tae; Lee, Yun (1 February 2009). "Effect of carbonation on the rebound number and compressive strength of concrete". Cement and Concrete Composites. 31 (2): 139–144. doi:10.1016/j.cemconcomp.2008.10.001. ISSN 0958-9465.
  77. ^ Kent, Douglas (22 October 2007). "Response: Lime is a much greener option than cement, says Douglas Kent". The Guardian. ISSN 0261-3077. Retrieved 22 January 2020.
  78. ^ "Novacem's 'carbon negative cement'". The American Ceramic Society. 9 March 2011. Retrieved 26 September 2023.
  79. ^ "Novacem". imperialinnovations.co.uk. Archived from the original on 3 August 2009.
  80. ^ Jha, Alok (31 December 2008). "Revealed: The cement that eats carbon dioxide". The Guardian. London. Archived from the original on 6 August 2013. Retrieved 28 April 2010.
  81. ^ "Factsheet on: Thallium" (PDF). Archived (PDF) from the original on 11 January 2012. Retrieved 15 September 2009.
  82. ^ Berkes, Howard (10 November 2011). "EPA Regulations Give Kilns Permission To Pollute : NPR". NPR.org. Archived from the original on 17 November 2011. Retrieved 17 November 2011.
  83. ^ "Guidelines for the selection and use of fuels and raw materials in the cement manufacturing process" (PDF). World Business Council for Sustainable Development. 1 June 2005. Archived from the original (PDF) on 10 September 2008.
  84. ^ "Increasing the use of alternative fuels at cement plants: International best practice" (PDF). International Finance Corporation, World Bank Group. 2017.
  85. ^ "Cement, concrete & the circular economy" (PDF). cembureau.eu. Archived from the original (PDF) on 12 November 2018.
  86. ^ de Beer, Jeroen et al. (2017) Status and prospects of co-processing of waste in EU cement plants Archived 30 December 2020 at the Wayback Machine. ECOFYS study.
  87. ^ "Alternative fuels in cement manufacture – CEMBUREAU brochure, 1997" (PDF). Archived from the original (PDF) on 2 October 2013.
  88. ^ "Engineers develop cement with 97 percent smaller carbon dioxide and energy footprint – DrexelNow". DrexelNow. 20 February 2012. Archived from the original on 18 December 2015. Retrieved 16 January 2016.
  89. ^ "How to make low-carbon concrete from old cement". The Economist. ISSN 0013-0613. Retrieved 27 April 2023.
  90. ^ Monks, Kieron (22 May 2014). "Would you live in a house made of sand and bacteria? It's a surprisingly good idea". CNN. Archived from the original on 20 July 2014. Retrieved 20 July 2014.
  91. ^ "Top-Innovationen 2020: Zement lässt sich auch klimafreundlich produzieren". www.spektrum.de (in German). Retrieved 28 December 2020.

Further reading

[edit]
  • Taylor, Harry F. W. (1997). Cement Chemistry. Thomas Telford. ISBN 978-0-7277-2592-9.
  • Peter Hewlett; Martin Liska (2019). Lea's Chemistry of Cement and Concrete. Butterworth-Heinemann. ISBN 978-0-08-100795-2.
  • Aitcin, Pierre-Claude (2000). "Cements of yesterday and today: Concrete of tomorrow". Cement and Concrete Research. 30 (9): 1349–1359. doi:10.1016/S0008-8846(00)00365-3.
  • van Oss, Hendrik G.; Padovani, Amy C. (2002). "Cement manufacture and the environment, Part I: Chemistry and Technology". Journal of Industrial Ecology. 6 (1): 89–105. Bibcode:2002JInEc...6...89O. doi:10.1162/108819802320971650. S2CID 96660377.
  • van Oss, Hendrik G.; Padovani, Amy C. (2003). "Cement manufacture and the environment, Part II: Environmental challenges and opportunities" (PDF). Journal of Industrial Ecology. 7 (1): 93–126. Bibcode:2003JInEc...7...93O. CiteSeerX 10.1.1.469.2404. doi:10.1162/108819803766729212. S2CID 44083686. Archived from the original on 22 September 2017. Retrieved 24 October 2017.
  • Deolalkar, S. P. (2016). Designing green cement plants. Amsterdam: Butterworth-Heinemann. ISBN 9780128034354. OCLC 919920182.
  • Friedrich W. Locher: Cement : Principles of production and use, Düsseldorf, Germany: Verlag Bau + Technik GmbH, 2006, ISBN 3-7640-0420-7
  • Javed I. Bhatty, F. MacGregor Miller, Steven H. Kosmatka; editors: Innovations in Portland Cement Manufacturing, SP400, Portland Cement Association, Skokie, Illinois, U.S., 2004, ISBN 0-89312-234-3
  • "Why cement emissions matter for climate change" Archived 21 March 2019 at the Wayback Machine Carbon Brief 2018
  • Neville, A.M. (1996). Properties of concrete. Fourth and final edition standards. Pearson, Prentice Hall. ISBN 978-0-582-23070-5. OCLC 33837400.
  • Taylor, H.F.W. (1990). Cement chemistry. Academic Press. p. 475. ISBN 978-0-12-683900-5.
  • Ulm, Franz-Josef; Roland J.-M. Pellenq; Akihiro Kushima; Rouzbeh Shahsavari; Krystyn J. Van Vliet; Markus J. Buehler; Sidney Yip (2009). "A realistic molecular model of cement hydrates". Proceedings of the National Academy of Sciences. 106 (38): 16102–16107. Bibcode:2009PNAS..10616102P. doi:10.1073/pnas.0902180106. PMC 2739865. PMID 19805265.
[edit]
  • "Cement" . Encyclopædia Britannica. Vol. 5 (11th ed.). 1911.

 

 

Tail of a radio-controlled helicopter, made of CFRP

Carbon fiber-reinforced polymers (American English), carbon-fibre-reinforced polymers (Commonwealth English), carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic (CFRP, CRP, CFRTP), also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.[1][2][3][4]

The binding polymer is often a thermoset resin such as epoxy, but other thermoset or thermoplastic polymers, such as polyester, vinyl ester, or nylon, are sometimes used.[4] The properties of the final CFRP product can be affected by the type of additives introduced to the binding matrix (resin). The most common additive is silica, but other additives such as rubber and carbon nanotubes can be used.

Carbon fiber is sometimes referred to as graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common, as it clashes with glass-(fiber)-reinforced polymer).

Properties

[edit]

CFRP are composite materials. In this case the composite consists of two parts: a matrix and a reinforcement. In CFRP the reinforcement is carbon fiber, which provides its strength. The matrix is usually a thermosetting plastic, such as polyester resin, to bind the reinforcements together.[5] Because CFRPs consist of two distinct elements, the material properties depend on these two elements.

Reinforcement gives CFRPs their strength and rigidity, measured by stress and elastic modulus respectively. Unlike isotropic materials like steel and aluminum, CFRPs have directional strength properties. The properties of a CFRP depend on the layouts of the carbon fiber and the proportion of the carbon fibers relative to the polymer.[6] The two different equations governing the net elastic modulus of composite materials using the properties of the carbon fibers and the polymer matrix can also be applied to carbon fiber reinforced plastics.[7] The rule of mixtures for the equal strain case gives:

which is valid for composite materials with the fibers oriented parallel to the applied load. is the total composite modulus, and are the volume fractions of the matrix and fiber respectively in the composite, and and are the elastic moduli of the matrix and fibers respectively.[7] The other extreme case of the elastic modulus of the composite with the fibers oriented transverse to the applied load can be found using the inverse rule of mixtures for the equal stress case:[7]

The above equations give an upper and lower bound on the Young's modulus for CFRP and there are many other factors that influence the true value.

The fracture toughness of carbon fiber reinforced plastics is governed by multiple mechanisms:

  • Debonding between the carbon fiber and polymer matrix.
  • Fiber pull-out.
  • Delamination between the CFRP sheets.[8]

Typical epoxy-based CFRPs exhibit virtually no plasticity, with less than 0.5% strain to failure. Although CFRPs with epoxy have high strength and elastic modulus, the brittle fracture mechanics presents unique challenges to engineers in failure detection since failure occurs catastrophically.[8] As such, recent efforts to toughen CFRPs include modifying the existing epoxy material and finding alternative polymer matrix. One such material with high promise is PEEK, which exhibits an order of magnitude greater toughness with similar elastic modulus and tensile strength.[8] However, PEEK is much more difficult to process and more expensive.[8]

Despite their high initial strength-to-weight ratios, a design limitation of CFRPs are their lack of a definable fatigue limit. This means, theoretically, that stress cycle failure cannot be ruled out. While steel and many other structural metals and alloys do have estimable fatigue or endurance limits, the complex failure modes of composites mean that the fatigue failure properties of CFRPs are difficult to predict and design against; however emerging research has shed light on the effects of low velocity impacts on composites.[9] Low velocity impacts can make carbon fiber polymers susceptible to damage.[9][10][11] As a result, when using CFRPs for critical cyclic-loading applications, engineers may need to design in considerable strength safety margins to provide suitable component reliability over its service life.

Environmental effects such as temperature and humidity can have profound effects on the polymer-based composites, including most CFRPs. While CFRPs demonstrate excellent corrosion resistance, the effect of moisture at wide ranges of temperatures can lead to degradation of the mechanical properties of CFRPs, particularly at the matrix-fiber interface.[12] While the carbon fibers themselves are not affected by the moisture diffusing into the material, the moisture plasticizes the polymer matrix.[8] This leads to significant changes in properties that are dominantly influenced by the matrix in CFRPs such as compressive, interlaminar shear, and impact properties.[13] The epoxy matrix used for engine fan blades is designed to be impervious against jet fuel, lubrication, and rain water, and external paint on the composites parts is applied to minimize damage from ultraviolet light.[8][14]

Carbon fibers can cause galvanic corrosion when CFRP parts are attached to aluminum or mild steel but not to stainless steel or titanium.[15]

CFRPs are very hard to machine, and cause significant tool wear. The tool wear in CFRP machining is dependent on the fiber orientation and machining condition of the cutting process. To reduce tool wear various types of coated tools are used in machining CFRP and CFRP-metal stack.[1]

Manufacturing

[edit]
Carbon fiber reinforced polymer

The primary element of CFRPs is a carbon filament; this is produced from a precursor polymer such as polyacrylonitrile (PAN), rayon, or petroleum pitch. For synthetic polymers such as PAN or rayon, the precursor is first spun into filament yarns, using chemical and mechanical processes to initially align the polymer chains in a way to enhance the final physical properties of the completed carbon fiber. Precursor compositions and mechanical processes used during spinning filament yarns may vary among manufacturers. After drawing or spinning, the polymer filament yarns are then heated to drive off non-carbon atoms (carbonization), producing the final carbon fiber. The carbon fibers filament yarns may be further treated to improve handling qualities, then wound onto bobbins.[16] From these fibers, a unidirectional sheet is created. These sheets are layered onto each other in a quasi-isotropic layup, e.g. 0°, +60°, or −60° relative to each other.

From the elementary fiber, a bidirectional woven sheet can be created, i.e. a twill with a 2/2 weave. The process by which most CFRPs are made varies, depending on the piece being created, the finish (outside gloss) required, and how many of the piece will be produced. In addition, the choice of matrix can have a profound effect on the properties of the finished composite.[17]

Many CFRP parts are created with a single layer of carbon fabric that is backed with fiberglass.[18] A tool called a chopper gun is used to quickly create these composite parts. Once a thin shell is created out of carbon fiber, the chopper gun cuts rolls of fiberglass into short lengths and sprays resin at the same time, so that the fiberglass and resin are mixed on the spot.[19] The resin is either external mix, wherein the hardener and resin are sprayed separately, or internal mixed, which requires cleaning after every use. Manufacturing methods may include the following:

Molding

[edit]

One method of producing CFRP parts is by layering sheets of carbon fiber cloth into a mold in the shape of the final product. The alignment and weave of the cloth fibers is chosen to optimize the strength and stiffness properties of the resulting material. The mold is then filled with epoxy and is heated or air-cured. The resulting part is very corrosion-resistant, stiff, and strong for its weight. Parts used in less critical areas are manufactured by draping cloth over a mold, with epoxy either pre-impregnated into the fibers (also known as pre-preg) or "painted" over it. High-performance parts using single molds are often vacuum-bagged and/or autoclave-cured, because even small air bubbles in the material will reduce strength. An alternative to the autoclave method is to use internal pressure via inflatable air bladders or EPS foam inside the non-cured laid-up carbon fiber.

Vacuum bagging

[edit]

For simple pieces of which relatively few copies are needed (one or two per day), a vacuum bag can be used. A fiberglass, carbon fiber, or aluminum mold is polished and waxed, and has a release agent applied before the fabric and resin are applied, and the vacuum is pulled and set aside to allow the piece to cure (harden). There are three ways to apply the resin to the fabric in a vacuum mold.

The first method is manual and called a wet layup, where the two-part resin is mixed and applied before being laid in the mold and placed in the bag. The other one is done by infusion, where the dry fabric and mold are placed inside the bag while the vacuum pulls the resin through a small tube into the bag, then through a tube with holes or something similar to evenly spread the resin throughout the fabric. Wire loom works perfectly for a tube that requires holes inside the bag. Both of these methods of applying resin require hand work to spread the resin evenly for a glossy finish with very small pin-holes.

A third method of constructing composite materials is known as a dry layup. Here, the carbon fiber material is already impregnated with resin (pre-preg) and is applied to the mold in a similar fashion to adhesive film. The assembly is then placed in a vacuum to cure. The dry layup method has the least amount of resin waste and can achieve lighter constructions than wet layup. Also, because larger amounts of resin are more difficult to bleed out with wet layup methods, pre-preg parts generally have fewer pinholes. Pinhole elimination with minimal resin amounts generally require the use of autoclave pressures to purge the residual gases out.

Compression molding

[edit]

A quicker method uses a compression mold, also commonly known as carbon fiber forging. This is a two (male and female), or multi-piece mold, usually made out of aluminum or steel and more recently 3D printed plastic. The mold components are pressed together with the fabric and resin loaded into the inner cavity that ultimately becomes the desired component. The benefit is the speed of the entire process. Some car manufacturers, such as BMW, claimed to be able to cycle a new part every 80 seconds. However, this technique has a very high initial cost since the molds require CNC machining of very high precision.

Filament winding

[edit]

For difficult or convoluted shapes, a filament winder can be used to make CFRP parts by winding filaments around a mandrel or a core.

Cutting

[edit]

Carbon fiber-reinforced pre-pregs and dry carbon fiber textiles require precise cutting methods to maintain material integrity and reduce defects such as fiber pull-out, delamination and fraying of the cutting edge. CNC digital cutting systems equipped with drag and oscillating are often used to cut carbon fiber pre-pregs, and rotating knives are commonly used to process carbon fiber fabrics. Ultrasonic cutting is another method to cut CFRP pre-pregs and is particularly effective in reducing delamination by minimizing mechanical stress during the cutting process. Waterjet cutting can be the preferred method for thicker and multilayered polymer composites.[20]

Applications

[edit]

Applications for CFRPs include the following:

Aerospace engineering

[edit]
An Airbus A350 with carbon fiber themed livery. Composite materials are used extensively throughout the A350.

The Airbus A350 XWB is 53% CFRP[21] including wing spars and fuselage components, overtaking the Boeing 787 Dreamliner, for the aircraft with the highest weight ratio for CFRP at 50%.[22] It was one of the first commercial aircraft to have wing spars made from composites. The Airbus A380 was one of the first commercial airliners to have a central wing-box made of CFRP and the first with a smoothly contoured wing cross-section instead of partitioning it span-wise into sections. This flowing, continuous cross section optimises aerodynamic efficiency.[citation needed] Moreover, the trailing edge, along with the rear bulkhead, empennage, and un-pressurised fuselage are made of CFRP.[23]

However, delays have pushed order delivery dates back because of manufacturing problems. Many aircraft that use CFRPs have experienced delays with delivery dates due to the relatively new processes used to make CFRP components, whereas metallic structures are better understood. A recurrent problem is the monitoring of structural ageing, for which new methods are required, due to the unusual multi-material and anisotropic[24][25][26] nature of CFRPs.[27]

In 1968 a Hyfil carbon-fiber fan assembly was in service on the Rolls-Royce Conways of the Vickers VC10s operated by BOAC.[28]

Specialist aircraft designers and manufacturers Scaled Composites have made extensive use of CFRPs throughout their design range, including the first private crewed spacecraft Spaceship One. CFRPs are widely used in micro air vehicles (MAVs) because of their high strength-to-weight ratio.

Airbus then moved to adopt CFRTP, because it can be reshaped and reprocessed after forming, can be manufactured faster, has higher impact resistance, is recyclable and remoldable, and has lower processing costs.[29]

Automotive engineering

[edit]
Citroën SM that won 1971 Rally of Morocco with carbon fiber wheels
1996 McLaren F1 – first carbon fiber body shell
McLaren MP4 (MP4/1), first carbon fiber F1 car

CFRPs are extensively used in high-end automobile racing.[30] The high cost of carbon fiber is mitigated by the material's unsurpassed strength-to-weight ratio, and low weight is essential for high-performance automobile racing. Race-car manufacturers have also developed methods to give carbon fiber pieces strength in a certain direction, making it strong in a load-bearing direction, but weak in directions where little or no load would be placed on the member. Conversely, manufacturers developed omnidirectional carbon fiber weaves that apply strength in all directions. This type of carbon fiber assembly is most widely used in the "safety cell" monocoque chassis assembly of high-performance race-cars. The first carbon fiber monocoque chassis was introduced in Formula One by McLaren in the 1981 season. It was designed by John Barnard and was widely copied in the following seasons by other F1 teams due to the extra rigidity provided to the chassis of the cars.[31]

Many supercars over the past few decades have incorporated CFRPs extensively in their manufacture, using it for their monocoque chassis as well as other components.[32] As far back as 1971, the Citroën SM offered optional lightweight carbon fiber wheels.[33][34]

Use of the material has been more readily adopted by low-volume manufacturers who used it primarily for creating body-panels for some of their high-end cars due to its increased strength and decreased weight compared with the glass-reinforced polymer they used for the majority of their products.

Civil engineering

[edit]

CFRPs have become a notable material in structural engineering applications. Studied in an academic context as to their potential benefits in construction, CFRPs have also proved themselves cost-effective in a number of field applications strengthening concrete, masonry, steel, cast iron, and timber structures. Their use in industry can be either for retrofitting to strengthen an existing structure or as an alternative reinforcing (or prestressing) material instead of steel from the outset of a project.

Retrofitting has become the increasingly dominant use of the material in civil engineering, and applications include increasing the load capacity of old structures (such as bridges, beams, ceilings, columns and walls) that were designed to tolerate far lower service loads than they are experiencing today, seismic retrofitting, and repair of damaged structures. Retrofitting is popular in many instances as the cost of replacing the deficient structure can greatly exceed the cost of strengthening using CFRP.[35]

Applied to reinforced concrete structures for flexure, the use of CFRPs typically has a large impact on strength (doubling or more the strength of the section is not uncommon), but only moderately increases stiffness (as little as 10%). This is because the material used in such applications is typically very strong (e.g., 3 GPa ultimate tensile strength, more than 10 times mild steel) but not particularly stiff (150 to 250 GPa elastic modulus, a little less than steel, is typical). As a consequence, only small cross-sectional areas of the material are used. Small areas of very high strength but moderate stiffness material will significantly increase strength, but not stiffness.

CFRPs can also be used to enhance shear strength of reinforced concrete by wrapping fabrics or fibers around the section to be strengthened. Wrapping around sections (such as bridge or building columns) can also enhance the ductility of the section, greatly increasing the resistance to collapse under dynamic loading. Such 'seismic retrofit' is the major application in earthquake-prone areas, since it is much more economic than alternative methods.

If a column is circular (or nearly so) an increase in axial capacity is also achieved by wrapping. In this application, the confinement of the CFRP wrap enhances the compressive strength of the concrete. However, although large increases are achieved in the ultimate collapse load, the concrete will crack at only slightly enhanced load, meaning that this application is only occasionally used. Specialist ultra-high modulus CFRP (with tensile modulus of 420 GPa or more) is one of the few practical methods of strengthening cast iron beams. In typical use, it is bonded to the tensile flange of the section, both increasing the stiffness of the section and lowering the neutral axis, thus greatly reducing the maximum tensile stress in the cast iron.

In the United States, prestressed concrete cylinder pipes (PCCP) account for a vast majority of water transmission mains. Due to their large diameters, failures of PCCP are usually catastrophic and affect large populations. Approximately 19,000 miles (31,000 km) of PCCP were installed between 1940 and 2006. Corrosion in the form of hydrogen embrittlement has been blamed for the gradual deterioration of the prestressing wires in many PCCP lines. Over the past decade, CFRPs have been used to internally line PCCP, resulting in a fully structural strengthening system. Inside a PCCP line, the CFRP liner acts as a barrier that controls the level of strain experienced by the steel cylinder in the host pipe. The composite liner enables the steel cylinder to perform within its elastic range, to ensure the pipeline's long-term performance is maintained. CFRP liner designs are based on strain compatibility between the liner and host pipe.[36]

CFRPs are more costly materials than commonly used their counterparts in the construction industry, glass fiber-reinforced polymers (GFRPs) and aramid fiber-reinforced polymers (AFRPs), though CFRPs are, in general, regarded as having superior properties. Much research continues to be done on using CFRPs both for retrofitting and as an alternative to steel as reinforcing or prestressing materials. Cost remains an issue and long-term durability questions still remain. Some are concerned about the brittle nature of CFRPs, in contrast to the ductility of steel. Though design codes have been drawn up by institutions such as the American Concrete Institute, there remains some hesitation among the engineering community about implementing these alternative materials. In part, this is due to a lack of standardization and the proprietary nature of the fiber and resin combinations on the market.

Carbon-fiber microelectrodes

[edit]

Carbon fibers are used for fabrication of carbon-fiber microelectrodes. In this application typically a single carbon fiber with diameter of 5–7 μm is sealed in a glass capillary.[37] At the tip the capillary is either sealed with epoxy and polished to make carbon-fiber disk microelectrode or the fiber is cut to a length of 75–150 μm to make carbon-fiber cylinder electrode. Carbon-fiber microelectrodes are used either in amperometry or fast-scan cyclic voltammetry for detection of biochemical signalling.

Sports goods

[edit]
A carbon-fiber and Kevlar canoe (Placid Boatworks Rapidfire at the Adirondack Canoe Classic)

CFRPs are now widely used in sports equipment such as in squash, tennis, and badminton racquets, sport kite spars, high-quality arrow shafts, hockey sticks, fishing rods, surfboards, high end swim fins, and rowing shells. Amputee athletes such as Jonnie Peacock use carbon fiber blades for running. It is used as a shank plate in some basketball sneakers to keep the foot stable, usually running the length of the shoe just above the sole and left exposed in some areas, usually in the arch.

Controversially, in 2006, cricket bats with a thin carbon-fiber layer on the back were introduced and used in competitive matches by high-profile players including Ricky Ponting and Michael Hussey. The carbon fiber was claimed to merely increase the durability of the bats, but it was banned from all first-class matches by the ICC in 2007.[38]

A CFRP bicycle frame weighs less than one of steel, aluminum, or titanium having the same strength. The type and orientation of the carbon-fiber weave can be designed to maximize stiffness in required directions. Frames can be tuned to address different riding styles: sprint events require stiffer frames while endurance events may require more flexible frames for rider comfort over longer periods.[39] The variety of shapes it can be built into has further increased stiffness and also allowed aerodynamic tube sections. CFRP forks including suspension fork crowns and steerers, handlebars, seatposts, and crank arms are becoming more common on medium as well as higher-priced bicycles. CFRP rims remain expensive but their stability compared to aluminium reduces the need to re-true a wheel and the reduced mass reduces the moment of inertia of the wheel. CFRP spokes are rare and most carbon wheelsets retain traditional stainless steel spokes. CFRPs also appear increasingly in other components such as derailleur parts, brake and shifter levers and bodies, cassette sprocket carriers, suspension linkages, disc brake rotors, pedals, shoe soles, and saddle rails. Although strong and light, impact, over-torquing, or improper installation of CFRP components has resulted in cracking and failures, which may be difficult or impossible to repair.[40][41]

Other applications

[edit]
Dunlop "Max-Grip" carbon fiber guitar picks. Sizes 1mm and Jazz III.
Dunlop "Max-Grip" carbon fiber guitar picks. Sizes 1mm and Jazz III.

The fire resistance of polymers and thermo-set composites is significantly improved if a thin layer of carbon fibers is moulded near the surface because a dense, compact layer of carbon fibers efficiently reflects heat.[42]

Strandberg Boden Plini neck-thru & bolt on versions that both utilize carbon fiber reinforcement strips to maintain rigidity.

CFRPs are being used in an increasing number of high-end products that require stiffness and low weight, these include:

  • Musical instruments, including violin bows; guitar picks, guitar necks (fitted with carbon fiber rods), pickguards/scratchplates; drum shells; bagpipe chanters; piano actions; and entire musical instruments such as carbon fiber cellos, violas, and violins, acoustic guitars and ukuleles; also, audio components such as turntables and loudspeakers.
  • Firearms use it to replace certain metal, wood, and fiberglass components but many of the internal parts are still limited to metal alloys as current reinforced plastics are unsuitable.
  • High-performance drone bodies and other radio-controlled vehicle and aircraft components such as helicopter rotor blades.
  • Lightweight poles such as: tripod legs, tent poles, fishing rods, billiards cues, walking sticks, and high-reach poles such as for window cleaning.
  • Dentistry, carbon fiber posts are used in restoring root canal treated teeth.
  • Railed train bogies for passenger service. This reduces the weight by up to 50% compared to metal bogies, which contributes to energy savings.[43]
  • Laptop shells and other high performance cases.
  • Carbon woven fabrics.[44][45]
  • Archery: carbon fiber arrows and bolts, stock (for crossbows) and riser (for vertical bows), and rail.
  • As a filament for the 3D fused deposition modeling printing process,[46] carbon fiber-reinforced plastic (polyamide-carbon filament) is used for the production of sturdy but lightweight tools and parts due to its high strength and tear length.[47]
  • District heating pipe rehabilitation, using a CIPP method.

Disposal and recycling

[edit]

The key aspect of recycling fiber-reinforced polymers is preserving their mechanical properties while successfully recovering both the thermoplastic matrix and the reinforcing fibers. CFRPs have a long service lifetime when protected from the sun. When it is time to decommission CFRPs, they cannot be melted down in air like many metals. When free of vinyl (PVC or polyvinyl chloride) and other halogenated polymers, CFRPs recycling processes can be categorized into four main approaches: mechanical, thermal, chemical, and biological. Each method offers distinct advantages in terms of material or energy recovery, contributing to sustainability efforts in composite waste management.

Process Matrix recovery Fiber recovery Degradation of Mechanical Properties Advantages/Drawbacks
Mechanical X X X +No use of hazardous chemical substances  +No gas emissions  +Low-cost energy needed  +Big volumes can be recycled

-Poor bonding between fiber/matrix -Fibers can damage the equipment

Chemical   X   +Long clean fibers +Retention of mechanical properties +Sometimes there is high recovery of the matrix

-Expensive equipment -Possible use of hazardous solvent

Thermal   X X +Fiber length retention +No use of hazardous chemical substances +better mechanical properties than mechanical approach +Matrix used to produce energy

-Recovered fiber properties highly influenced by process parameters -some processes have no recovery of matrix material

Mechanical Recycling

[edit]

The mechanical process primarily involves grinding, which breaks down composite materials into pulverulent charges and fibrous reinforcements. This method is focused on both the thermoplastic and filler material recovery; however, this process shortens the fibers dramatically. Just as with downcycled paper, the shortened fibers cause the recycled material to be weaker than the original material. There are still many industrial applications that do not need the strength of full-length carbon fiber reinforcement. For example, chopped reclaimed carbon fiber can be used in consumer electronics, such as laptops. It provides excellent reinforcement of the polymers used even if it lacks the strength-to-weight ratio of an aerospace component.[48]

Electro fragmentation

[edit]

This method consists in shredding CFRP by pulsed electrical discharges. Initially developed to extract crystals and precious stones from mining rocks, it is now expected to be developed for composites. The material is placed in a vessel containing water and two electrodes. The high voltage electrical pulse generated between the electrodes (50-200 kV) fragments the material into smaller pieces.[49] The inconvenient of this technique is that the energy consumed is 2.6 times the one of a mechanical route making it not economically competitive in terms of energy saving and needs further investigation.

Thermal Recycling

[edit]

Thermal processes include several techniques such as incineration, thermolysis, pyrolysis, gasification, fluidized bed processing, and cement plant utilization. This processes imply the recovery of the fibers by the removal of the resin by volatilizing it, leading to by-products such as gases, liquids or inorganic matter.[50]

Oxidation in fluidized bed

[edit]

This technique consists in exposing the composite to a hot and oxygen-rich flow, in which it is combusted (450–550 °C, 840–1,020 °F) . The working temperature is selected in function of the matrix to be decomposed, to limit damages of the fibers. After a shredding step to 6-20 mm size, the composite is introduced into a bed of silica sand, on a metallic mesh, in which the resin will be decomposed into oxidized molecules and fiber filaments. These components will be carried up with the air stream while heavier particles will sink in the bed. This last point is a great advantage for contaminated end-of-life products, with painted surfaces, foam cores or metal insert. A cyclone enables the recovery of fibers of length ranging between 5 and 10 mm and with very little contamination . The matrix is fully oxidized in a second burner operating at approximatively 1,000 °C (1,850 °F) leading to energy recovery and a clean flue gas.[51]

Chemical Recycling

[edit]

The chemical recycling of CFRPs involves using a reactive solvent at relatively low temperatures (below 350°C) to break down the resin while leaving the fibers intact for reuse. The solvent degrades the composite matrix into smaller molecular fragments (oligomer), and depending on the chosen solvent system, various processing parameters such as temperature, pressure, and catalysts can be adjusted to optimize the process. The solvent, often combined with co-solvents or catalysts, penetrates the composite and breaks specific chemical bonds, resulting in recovered monomers from the resin and clean, long fibers with preserved mechanical properties. The required temperature and pressure depend on the type of resin, with epoxy resins generally needing higher temperatures than polyester resins. Among the different reactive mediums studied, water is the most commonly used due to its environmental benefits. When combined with alkaline catalysts, it effectively degrades many resins, while acidic catalysts are used for more resistant polymers. Other solvents, such as ethanol, acetone, and their mixtures, have also been explored for this process.

Despite its advantages, this method has some limitations. It requires specialized equipment capable of handling corrosive solvents, hazardous chemicals, and high temperatures or pressures, especially when operating under supercritical conditions. While extensively researched at the laboratory scale, industrial adoption remains limited, with the technology currently reaching a Technology Readiness Level (TRL) of 4 for carbon fiber recycling.[52]

Dissolution Process

[edit]

The dissolution process is a method used to recover both the polymer matrix and fibers from thermoplastic composites without breaking chemical bonds. Unlike solvolysis, which involves the chemical degradation of the polymer, dissolution simply dissolves the polymer chains into a solvent, allowing for material recovery in its original form. An energy analysis of the process indicated that dissolution followed by evaporation was more energy-efficient than precipitation. Additionally, avoiding precipitation helped minimize polymer loss, improving overall material recovery efficiency. This method offers a promising approach for sustainable recycling of thermoplastic composites.[53]

Biological Recycling

[edit]

The biological process, though still under development, focuses on biodegradation and composting. This method holds promise for bio-based and agro-composites, aiming to create an environmentally friendly end-of-life solution for these materials. As research advances, biological recycling may offer an effective means of reducing plastic composite waste in a sustainable manner.[54]

Carbon nanotube reinforced polymer (CNRP)

[edit]

In 2009, Zyvex Technologies introduced carbon nanotube-reinforced epoxy and carbon pre-pregs.[55] Carbon nanotube reinforced polymer (CNRP) is several times stronger and tougher than typical CFRPs and is used in the Lockheed Martin F-35 Lightning II as a structural material for aircraft.[56] CNRP still uses carbon fiber as the primary reinforcement,[57] but the binding matrix is a carbon nanotube-filled epoxy.[58]

See also

[edit]

References

[edit]
  1. ^ a b Nguyen, Dinh; Abdullah, Mohammad Sayem Bin; Khawarizmi, Ryan; Kim, Dave; Kwon, Patrick (2020). "The effect of fiber orientation on tool wear in edge-trimming of carbon fiber reinforced plastics (CFRP) laminates". Wear. 450–451. Elsevier B.V: 203213. doi:10.1016/j.wear.2020.203213. ISSN 0043-1648. S2CID 214420968.
  2. ^ Geier, Norbert; Davim, J. Paulo; Szalay, Tibor (1 October 2019). "Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review". Composites Part A: Applied Science and Manufacturing. 125: 105552. doi:10.1016/j.compositesa.2019.105552. hdl:10773/36722.
  3. ^ Dransfield, Kimberley; Baillie, Caroline; Mai, Yiu-Wing (1 January 1994). "Improving the delamination resistance of CFRP by stitching—a review". Composites Science and Technology. 50 (3): 305–317. doi:10.1016/0266-3538(94)90019-1.
  4. ^ a b Kudo, Natsuko; Fujita, Ryohei; Oya, Yutaka; Sakai, Takenobu; Nagano, Hosei; Koyanagi, Jun (30 June 2023). "Identification of invisible fatigue damage of thermosetting epoxy resin by non-destructive thermal measurement using entropy generation". Advanced Composite Materials. 33 (2): 233–249. doi:10.1080/09243046.2023.2230687. ISSN 0924-3046.
  5. ^ Kopeliovich, Dmitri. "Carbon Fiber Reinforced Polymer Composites". Archived from the original on 14 May 2012.. substech.com
  6. ^ Corum, J. M.; Battiste, R. L.; Liu, K. C; Ruggles, M. B. (February 2000). "Basic Properties of Reference Crossply Carbon-Fiber Composite, ORNL/TM-2000/29, Pub57518" (PDF). Oak Ridge National Laboratory. Archived (PDF) from the original on 27 December 2016.
  7. ^ a b c Courtney, Thomas (2000). Mechanical Behavior of Materials. United States of America: Waveland Press, Inc. pp. 247–249. ISBN 1-57766-425-6.
  8. ^ a b c d e f Chawla, Krishan (2013). Composite Materials. United States of America: Springer. ISBN 978-0-387-74364-6.
  9. ^ a b Liao, Binbin; Wang, Panding; Zheng, Jinyang; Cao, Xiaofei; Li, Ying; Ma, Quanjin; Tao, Ran; Fang, Daining (1 September 2020). "Effect of double impact positions on the low velocity impact behaviors and damage interference mechanism for composite laminates". Composites Part A: Applied Science and Manufacturing. 136: 105964. doi:10.1016/j.compositesa.2020.105964. ISSN 1359-835X.
  10. ^ Ma, Binlin; Cao, Xiaofei; Feng, Yu; Song, Yujian; Yang, Fei; Li, Ying; Zhang, Deyue; Wang, Yipeng; He, Yuting (15 February 2024). "A comparative study on the low velocity impact behavior of UD, woven, and hybrid UD/woven FRP composite laminates". Composites Part B: Engineering. 271: 111133. doi:10.1016/j.compositesb.2023.111133. ISSN 1359-8368.
  11. ^ Aminakbari, Nariman; Kabir, Mohammad Zaman; Rahai, Alireza; Hosseinnia, Amirali (1 January 2024). "Experimental and Numerical Evaluation of GFRP-Reinforced Concrete Beams Under Consecutive Low-Velocity Impact Loading". International Journal of Civil Engineering. 22 (1): 145–156. Bibcode:2024IJCE...22..145A. doi:10.1007/s40999-023-00883-9. ISSN 2383-3874.
  12. ^ Ray, B. C. (1 June 2006). "Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites". Journal of Colloid and Interface Science. 298 (1): 111–117. Bibcode:2006JCIS..298..111R. doi:10.1016/j.jcis.2005.12.023. PMID 16386268.
  13. ^ Almudaihesh, Faisel; Holford, Karen; Pullin, Rhys; Eaton, Mark (1 February 2020). "The influence of water absorption on unidirectional and 2D woven CFRP composites and their mechanical performance". Composites Part B: Engineering. 182: 107626. doi:10.1016/j.compositesb.2019.107626. ISSN 1359-8368. S2CID 212969984. Archived from the original on 1 October 2021. Retrieved 1 October 2021.
  14. ^ Guzman, Enrique; Cugnoni, Joël; Gmür, Thomas (May 2014). "Multi-factorial models of a carbon fibre/epoxy composite subjected to accelerated environmental ageing". Composite Structures. 111: 179–192. doi:10.1016/j.compstruct.2013.12.028.
  15. ^ Yari, Mehdi (24 March 2021). "Galvanic Corrosion of Metals Connected to Carbon Fiber Reinforced Polymers". corrosionpedia.com. Archived from the original on 24 June 2021. Retrieved 21 June 2021.
  16. ^ "How is it Made". Zoltek. Archived from the original on 19 March 2015. Retrieved 26 March 2015.
  17. ^ Syed Mobin, Syed Mobin; Azgerpasha, Shaik (2019). "Tensile Testing on Composite Materials (CFRP) with Adhesive" (PDF). International Journal of Emerging Science and Engineering. 5 (12): 6. Archived (PDF) from the original on 21 August 2022. Retrieved 21 August 2022 – via IJESE.
  18. ^ Glass Companies, Molded Fiber (2018), Technical Design Guide for FRP Composite Products and Parts (PDF), vol. 1, p. 25, archived from the original (PDF) on 21 August 2022, retrieved 21 August 2022
  19. ^ Unknown, Chris (22 January 2020). "Composite Manufacturing Methods". Explore Composites!. Archived from the original on 21 August 2022. Retrieved 21 August 2022.
  20. ^ "Cutting of Fiber-Reinforced Composites: Overview". Sollex. 6 March 2025. Retrieved 31 March 2025.
  21. ^ "Taking the lead: A350XWB presentation" (PDF). EADS. December 2006. Archived from the original on 27 March 2009.
  22. ^ "AERO – Boeing 787 from the Ground Up". Boeing. 2006. Archived from the original on 21 February 2015. Retrieved 7 February 2015.
  23. ^ Pora, Jérôme (2001). "Composite Materials in the Airbus A380 – From History to Future" (PDF). Airbus. Archived (PDF) from the original on 6 February 2015. Retrieved 7 February 2015.
  24. ^ Machado, Miguel A.; Antin, Kim-Niklas; Rosado, Luís S.; Vilaça, Pedro; Santos, Telmo G. (November 2021). "High-speed inspection of delamination defects in unidirectional CFRP by non-contact eddy current testing". Composites Part B: Engineering. 224: 109167. doi:10.1016/j.compositesb.2021.109167.
  25. ^ Machado, Miguel A.; Antin, Kim-Niklas; Rosado, Luís S.; Vilaça, Pedro; Santos, Telmo G. (July 2019). "Contactless high-speed eddy current inspection of unidirectional carbon fiber reinforced polymer". Composites Part B: Engineering. 168: 226–235. doi:10.1016/j.compositesb.2018.12.021.
  26. ^ Antin, Kim-Niklas; Machado, Miguel A.; Santos, Telmo G.; Vilaça, Pedro (March 2019). "Evaluation of Different Non-destructive Testing Methods to Detect Imperfections in Unidirectional Carbon Fiber Composite Ropes". Journal of Nondestructive Evaluation. 38 (1). doi:10.1007/s10921-019-0564-y. ISSN 0195-9298.
  27. ^ Guzman, Enrique; Gmür, Thomas (dir.) (2014). A Novel Structural Health Monitoring Method for Full-Scale CFRP Structures (PDF) (Thesis). EPFL PhD thesis. doi:10.5075/epfl-thesis-6422. Archived (PDF) from the original on 25 June 2016.
  28. ^ "Engines". Flight International. 26 September 1968. Archived from the original on 14 August 2014.
  29. ^ Szondy, David (28 March 2025). "Airbus previews next-gen airliner with bird-inspired wings". New Atlas. Retrieved 7 April 2025.
  30. ^ "Red Bull's How To Make An F1 Car Series Explains Carbon Fiber Use: Video". motorauthority. 25 September 2013. Archived from the original on 29 September 2013. Retrieved 11 October 2013.
  31. ^ Henry, Alan (1999). McLaren: Formula 1 Racing Team. Haynes. ISBN 1-85960-425-0.
  32. ^ Howard, Bill (30 July 2013). "BMW i3: Cheap, mass-produced carbon fiber cars finally come of age". Extreme Tech. Archived from the original on 31 July 2015. Retrieved 31 July 2015.
  33. ^ Petrány, Máté (17 March 2014). "Michelin Made Carbon Fiber Wheels For Citroën Back In 1971". Jalopnik. Archived from the original on 18 May 2015. Retrieved 31 July 2015.
  34. ^ L:aChance, David (April 2007). "Reinventing the Wheel Leave it to Citroën to bring the world's first resin wheels to market". Hemmings. Archived from the original on 6 September 2015. Retrieved 14 October 2015.
  35. ^ Ismail, N. "Strengthening of bridges using CFRP composites." najif.net.
  36. ^ Rahman, S. (November 2008). "Don't Stress Over Prestressed Concrete Cylinder Pipe Failures". Opflow Magazine. 34 (11): 10–15. Bibcode:2008Opflo..34k..10R. doi:10.1002/j.1551-8701.2008.tb02004.x. S2CID 134189821. Archived from the original on 2 April 2015.
  37. ^ Pike, Carolyn M.; Grabner, Chad P.; Harkins, Amy B. (4 May 2009). "Fabrication of Amperometric Electrodes". Journal of Visualized Experiments (27). doi:10.3791/1040. PMC 2762914. PMID 19415069.
  38. ^ "ICC and Kookaburra Agree to Withdrawal of Carbon Bat". NetComposites. 19 February 2006. Archived from the original on 28 September 2018. Retrieved 1 October 2018.
  39. ^ "Carbon Technology". Look Cycle. Archived from the original on 30 November 2016. Retrieved 30 November 2016.
  40. ^ "The Perils of Progress". Bicycling Magazine. 16 January 2012. Archived from the original on 23 January 2013. Retrieved 16 February 2013.
  41. ^ "Busted Carbon". Archived from the original on 30 November 2016. Retrieved 30 November 2016.
  42. ^ Zhao, Z.; Gou, J. (2009). "Improved fire retardancy of thermoset composites modified with carbon nanofibers". Sci. Technol. Adv. Mater. 10 (1): 015005. Bibcode:2009STAdM..10a5005Z. doi:10.1088/1468-6996/10/1/015005. PMC 5109595. PMID 27877268.
  43. ^ "Carbon fibre reinforced plastic bogies on test". Railway Gazette. 7 August 2016. Archived from the original on 8 August 2016. Retrieved 9 August 2016.
  44. ^ Lomov, Stepan V.; Gorbatikh, Larissa; Kotanjac, Željko; Koissin, Vitaly; Houlle, Matthieu; Rochez, Olivier; Karahan, Mehmet; Mezzo, Luca; Verpoest, Ignaas (February 2011). "Compressibility of carbon woven fabrics with carbon nanotubes/nanofibres grown on the fibres" (PDF). Composites Science and Technology. 71 (3): 315–325. doi:10.1016/j.compscitech.2010.11.024.
  45. ^ Hans, Kreis (2 July 2014). "Carbon woven fabrics". compositesplaza.com. Archived from the original on 2 July 2018. Retrieved 2 January 2018.
  46. ^ Ali Nahran, Shakila; Saharudin, Mohd Shahneel; Mohd Jani, Jaronie; Wan Muhammad, Wan Mansor (2022). "The Degradation of Mechanical Properties Caused by Acetone Chemical Treatment on 3D-Printed PLA-Carbon Fibre Composites". In Ismail, Azman; Dahalan, Wardiah Mohd; Öchsner, Andreas (eds.). Design in Maritime Engineering. Advanced Structured Materials. Vol. 167. Cham: Springer International Publishing. pp. 209–216. doi:10.1007/978-3-030-89988-2_16. ISBN 978-3-030-89988-2. S2CID 246894534.
  47. ^ "Polyamid CF Filament – 3D Druck mit EVO-tech 3D Druckern" [Polyamide CF Filament – 3D printing with EVO-tech 3D printers] (in German). Austria: EVO-tech. Archived from the original on 30 April 2019. Retrieved 4 June 2019.
  48. ^ Schinner, G.; Brandt, J.; Richter, H. (1 July 1996). "Recycling Carbon-Fiber-Reinforced Thermoplastic Composites". Journal of Thermoplastic Composite Materials. 9 (3): 239–245. doi:10.1177/089270579600900302. ISSN 0892-7057.
  49. ^ Roux, Maxime; Eguémann, Nicolas; Dransfeld, Clemens; Thiébaud, Frédéric; Perreux, Dominique (1 March 2017). "Thermoplastic carbon fibre-reinforced polymer recycling with electrodynamical fragmentation: From cradle to cradle". Journal of Thermoplastic Composite Materials. 30 (3): 381–403. doi:10.1177/0892705715599431. ISSN 0892-7057.
  50. ^ Bernatas, Rebecca; Dagréou, Sylvie; Despax-Ferreres, Auriane; Barasinski, Anaïs (2021). "Recycling of fiber reinforced composites with a focus on thermoplastic composites". Cleaner Engineering and Technology. 5: 100272. Bibcode:2021CEngT...500272B. doi:10.1016/j.clet.2021.100272.
  51. ^ Naqvi, S. R.; Prabhakara, H. Mysore; Bramer, E. A.; Dierkes, W.; Akkerman, R.; Brem, G. (1 September 2018). "A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy". Resources, Conservation and Recycling. 136: 118–129. Bibcode:2018RCR...136..118N. doi:10.1016/j.resconrec.2018.04.013. ISSN 0921-3449.
  52. ^ Zhang, Jin; Chevali, Venkata S.; Wang, Hao; Wang, Chun-Hui (15 July 2020). "Current status of carbon fibre and carbon fibre composites recycling". Composites Part B: Engineering. 193: 108053. doi:10.1016/j.compositesb.2020.108053. ISSN 1359-8368.
  53. ^ Cousins, Dylan S.; Suzuki, Yasuhito; Murray, Robynne E.; Samaniuk, Joseph R.; Stebner, Aaron P. (1 February 2019). "Recycling glass fiber thermoplastic composites from wind turbine blades". Journal of Cleaner Production. 209: 1252–1263. Bibcode:2019JCPro.209.1252C. doi:10.1016/j.jclepro.2018.10.286. ISSN 0959-6526.
  54. ^ Bernatas, Rebecca; Dagreou, Sylvie; Despax-Ferreres, Auriane; Barasinski, Anaïs (1 December 2021). "Recycling of fiber reinforced composites with a focus on thermoplastic composites". Cleaner Engineering and Technology. 5: 100272. Bibcode:2021CEngT...500272B. doi:10.1016/j.clet.2021.100272. ISSN 2666-7908.
  55. ^ "Zyvex Performance Materials Launch Line of Nano-Enhanced Adhesives that Add Strength, Cut Costs" (PDF) (Press release). Zyvex Performance Materials. 9 October 2009. Archived from the original (PDF) on 16 October 2012. Retrieved 26 March 2015.
  56. ^ Trimble, Stephen (26 May 2011). "Lockheed Martin reveals F-35 to feature nanocomposite structures". Flight International. Archived from the original on 30 May 2011. Retrieved 26 March 2015.
  57. ^ Pozegic, T. R.; Jayawardena, K. D. G. I.; Chen, J-S.; Anguita, J. V.; Ballocchi, P.; Stolojan, V.; Silva, S. R. P.; Hamerton, I. (1 November 2016). "Development of sizing-free multi-functional carbon fibre nanocomposites". Composites Part A: Applied Science and Manufacturing. 90: 306–319. doi:10.1016/j.compositesa.2016.07.012. hdl:1983/9e3d463c-20a8-4826-89f6-759e950f43e6. ISSN 1359-835X. S2CID 137846813. Archived from the original on 1 October 2021. Retrieved 1 October 2021.
  58. ^ "AROVEX™ Nanotube Enhanced Epoxy Resin Carbon Fiber Prepreg – Material Safety Data Sheet" (PDF). Zyvex Performance Materials. 8 April 2009. Archived from the original (PDF) on 16 October 2012. Retrieved 26 March 2015.
[edit]

 

Driving Directions in Cook County


Driving Directions From 42.040913746131, -88.212085693635 to
Driving Directions From 42.086153671225, -88.19640031169 to
Driving Directions From 42.07984865544, -88.090966667006 to
Driving Directions From 42.057033817479, -88.12104223269 to
Driving Directions From 42.10843482977, -88.114090738222 to
Driving Directions From 42.045672172608, -88.183597799308 to
Driving Directions From 42.093160560894, -88.211147167359 to
Driving Directions From 42.088525008778, -88.079435634324 to
Driving Directions From 42.019747850993, -88.18113333394 to
Driving Directions From 42.085382467229, -88.07098341093 to